Jacobsonlawrence4051
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.The Desert of Maine, not a real desert, is a 160,000 m2 tourist attraction of glacial silt which resembles a desert, surrounded by a pine forest in the state of Maine located in the northeastern USA. Though not a true desert, the soil of the Desert of Maine has a sandy texture with poor water-holding abilities, nutrient retention capabilities, and a relatively low pH value (pH 5.09). Samples from this site may be of interest to examine the bacterial diversity present on mineral sandy loam soils with an acidic pH, low concentrations of organic materials though surrounded by a pine forest, and compare it with true desert soil microbial populations. Two surface sand samples from the Desert of Maine were obtained, and pyrosequencing of PCR amplified 16S rRNA genes from total extracted DNA was used to assess bacterial diversity, community structure, and the relative abundance of major bacterial taxa. We found that the soil samples from the Desert of Maine displayed high levels of bacterial diversity, with a predominance of members belonging to the Proteobacteria and Actinobacteria phyla. Bacteria from the most abundant genus, Acidiphilium, represent 12.5% of the total 16S rDNA sequences. Temozolomide In total, 1394 OTUs were observed in the two samples, with 668 OTUs being observed in both samples. By comparing Desert of Maine bacterial populations with studies on similar soil environments, we found that the samples contained less Acidobacteria than soils from acid soil forests, and less Firmicutes plus more Proteobacteria than oligotrophic desert soils. Interestingly, our samples were found to be highly similar in their composition to an oak forest soil in France.Bleeding canker of horse chestnut trees is a bacterial disease, caused by the bacterium Pseudomonas syringae pv. aesculi, estimated to be present in ~ 50% of UK horse chestnut trees. Currently, the disease has no cure and tree removal can be a common method of reducing inoculum and preventing spread. One potential method of control could be achieved using naturally occurring bacteriophages infective to the causative bacterium. Bacteriophages were isolated from symptomatic and asymptomatic horse chestnut trees in three locations in the South East of England. The phages were found to be belonging to both the Myoviridae and Podoviridae families by RAPD PCR and transmission electron microscopy. Experimental coevolution was carried out to understand the dynamics of bacterial resistance and phage infection and to determine whether new infective phage genotypes would emerge. The phages exhibited different coevolution patterns with their bacterial hosts across time. This approach could be used to generate novel phages for use in biocontrol cocktails in an effort to reduce the potential emergence of bacterial resistance.As one of the most common target organs for hematogenous spread from diverse cancers, biopsy interpretation of lung tumors is complicated by the challenging question of primary versus metastatic and by frequent entrapment of native respiratory glands. Nevertheless, the literature dealing with this issue is surprisingly sparse and no single study has been devoted to this topic. We reviewed 47 surgical lung specimens of non-epithelial neoplasms (38 metastases, mainly from sarcomas and 9 primary lesions) for frequency and pattern of intralesional epithelial entrapment. Respiratory epithelium entrapment was noted in 23/47 (49%) cases (diffuse in 15 and peripheral in 8). Entrapped glands frequently showed prominent regenerative and reactive changes mimicking neoplastic glands. Based on cellularity of the mesenchymal component and the extent, distribution and shape of entrapped respiratory glands, four morphological patterns were recognized paucicellular sclerosing low-grade neoplasms containing leaflet-like glands indistinguishable from adenofibroma and fibroepithelial hamartomas (n = 11), and biphasic cellular lesions mimicking adenomyoepithelioma (n = 1), biphasic synovial sarcoma (n = 2), and pleuropulmonary blastoma (n = 1). Only a single genuine pulmonary adenofibroma was identified. This study highlights frequent respiratory epithelium entrapment in diverse non-epithelial lung tumors, both primary and metastatic. Recognition of this finding and use of adjunct IHC combined with clinical history should help to avoid misinterpretation as primary pulmonary biphasic neoplasm or as harmless adenofibroma. The vast majority of morphologically defined lung adenofibromas represent adenofibroma-like variants of histogenetically diverse entities so that a diagnosis of adenofibroma should be rendered only very restrictively and then as a diagnosis by exclusion.Congenital pulmonary airway malformation (CPAM) occurs most commonly in infants. It is divided into 5 types. The most common types 1 and 2 are cystic, type 0 presents as bronchial buds without alveolar tissue, most likely corresponding to alveolar dysgenesis, while type 3 is composed of branching bronchioles and appears as a solid lesion. A defect in the epithelial-mesenchymal crosstalk might be the underlying mechanism for all. Type 4 is a peripheral cystic lesion with a thin cyst wall covered by pneumocytes. CPAM 4 has been mixed up with pleuropulmonary blastoma (PPB) type I and some authors question its existence. We investigated five cases of CPAM type 4 for the presence or absence of rhabdomyoblasts, and for markers associated with CPAM development. In addition, all cases were evaluated for mutations within the Dicer gene and for mutations of the RAS family of oncogenes. All five cases showed smooth muscle actin and desmin-positive cells; however, only one case showed a few cells positive for MyoD. The same case showed a mutation of Dicer 1. All cases were negative for mutations of the RAS family of genes. Fibroblast growth factor 10 was similarly expressed in all cases, and thus cannot be used to differentiate CPAM4 from PPB-I. Low expression of the proliferation marker Ki67 was seen in our CPAM 4 cases and the probable PPB-I case. YingYang-1 protein seems to play an active role in the development of PPB-I. CPAM 4 can be separated from PPB-I based on the presence of rhabdomyoblasts and mutations in Dicer 1 gene. These cells might not be numerous; therefore, all available tissue has to be evaluated. As CPAM 4 morphologically looks very similar to PPB-I, it might be speculated, that there exists a potential for progression from CPAM 4 to PPB-I, by acquiring somatic mutations in Dicer 1.PURPOSE Circular RNAs (circRNAs) are widely expressed noncoding RNAs which play important roles in various processes. The present study aimed to explore the effect of maternal PCOS on the expression of circRNAs in fetus and assessed the potential role of circRNA in human ovarian granulosa cell proliferation. METHODS Total RNA was extracted from the fetal side of placental tissues from maternal PCOS (n = 3) and healthy puerpera (n = 3) for circRNA microarray. Real-time reverse transcriptase quantitative PCR (RT-qPCR) was used to validate the microarray data in fetal side of placental tissues from puerpera with (n = 18) and without (n = 30) PCOS. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to predict the functions and pathways of circ_0023942 host genes. The circRNA-miRNA-mRNA network was constructed through bioinformatics prediction. Circ_0023942 overexpression vector was transiently transfected into human ovarian granulosa cell lines KGN and COV434. Celuman ovarian granulosa cell proliferation possibly via regulating CDK-4.PURPOSE To determine the morphological features of the denticulate ligament in fetal period. METHODS Twelve formalin-fixed fetuses (six females and six males) with a mean gestational age of 27.0 ± 2.04 weeks (range between 25 and 32 weeks) were dissected to reveal morphological properties of the denticulate ligaments. RESULTS Denticulate ligament was observed as a continuous ligament extending throughout the length of spinal cord in all fetuses. It separated the vertebral canal into two as anterior and posterior parts and was anchored to the dura mater on either side of the spinal cord with mostly triangular processes as well as thin band-like extensions. The first denticulate ligament process was always a large and prominent fibrous band and was arising from the spinal cord surface, extending in an oblique direction upward to the anterolateral rim of foramen magnum, below and posterior to the hypoglossal canal. The last denticulate ligament process was observed either in the T11-12 (2 sides, 8%), T12-L1 (15 sides, 62%) or L1-2 (7 sides, 30%) and all were band-like processes. At certain spinal cord levels, denticulate ligament had no processes to attach duramater while in some other fetuses double denticulate ligament processes were detected within the same interval. The distance between the denticulate ligament process and the superior spinal nerve root and the distance between the denticulate ligament process and the inferior spinal nerve root were measured at each spinal level. This distance was found to be increased from upper to lower levels of the spine. CONCLUSION Detailed morphological data about fetal denticulate ligament presented in this study provide significant information which may be essential during several surgical interventions performed in early postnatal period and childhood focusing on the spinal cord, spinal nerve roots and meningeal structures.Glucans are characteristic and major constituents of fungal cell walls. Depending on the species, different glucan polysaccharides can be found. These differ in the linkage of the D-glucose monomers which can be either in α- or β-conformation and form 1,3, 1,4 or 1,6 O-glycosidic bonds. The linkages and polymer lengths define the physical properties of the glucan macromolecules, which may form a scaffold for other cell wall structures and influence the rigidity and elasticity of the wall. β-1,3-glucan is essential for the viability of many fungal pathogens. Therefore, the β-1,3-glucan synthase complex represents an excellent and primary target structure for antifungal drugs. Fungal cell wall β-glucan is also an important pathogen-associated molecular pattern (PAMP). To hide from innate immunity, many fungal pathogens depend on the synthesis of cell wall α-glucan, which functions as a stealth molecule to mask the β-glucans itself or links other masking structures to the cell wall. Here, we review the current knowledge about the biosynthetic machineries that synthesize β-1,3-glucan, β-1,6-glucan, and α-1,3-glucan.