Colepeck1715

Z Iurium Wiki

Verze z 2. 10. 2024, 16:26, kterou vytvořil Colepeck1715 (diskuse | příspěvky) (Založena nová stránka s textem „Karaya gum, pectin and xanthan gum have been tested as candidates for manufacturing mucoadhesive trilayer films containing ethylcellulose and chitosan for…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Karaya gum, pectin and xanthan gum have been tested as candidates for manufacturing mucoadhesive trilayer films containing ethylcellulose and chitosan for the vaginal administration of the antiviral Tenofovir (TFV). The swelling profile correlated with the amount of mobile dipoles determined by impedance spectroscopy allows the determination of the hydration dynamics of these films. The fast water penetration has been demonstrated to favor the formation of polyelectrolyte complexes (PEC) via hydrogen or ionic bonds which would favor a controlled release. The incorporation of an inorganic drug release regulator induces the weakness of the polymeric chains thus enhancing the ionic mobility via the formation of low molecular weight PECs in films manufactured with karaya gum. Due to the different mechanical properties of the individual components, pectin-based films failed for a potential pharmaceutical formulation. However, mucoadhesive trilayer films produced with xanthan gum have demonstrated a moderate swelling, improved wettability and a controlled release of TFV.The chitosan (CS) transparent film has attracted much attention in food and medicine packaging areas due to their biodegradability and good availability. A novel carbon quantum dots compound containing nitrogen and phosphorus (NP-CQDs) was obtained by reacting citric acids, with urea and phytic acids. The density of the film was increased, and the water vapor permeation was reduced by the presence of NP-CQDs. The introduction of 4 wt% NP-CQDs increased the water contact angle of the CS film from 79.2° to 105.8°. The shielding on UV-A and UV-B transmittance was increased with the NP-CQDs loading. The film containing 4 wt% NP-CQDs blocked more than 90.2% UV-A and 96.5% UV-B; however, it only blocked 26.8% visible light. It also exhibited better antibacterial activity to both E. https://www.selleckchem.com/products/pimicotinib.html coli and S. aureus than the control CS film. This work provided a feasible way to prepare multifunctional bio-safe film.Nowadays, skin biocompatible products are fast-growing markets for nanocelluloses with increasing number of patents published in last decade. This review highlights recent developments, market trends, safety assessments, and regulations for different nanocellulose types (i.e. nanoparticles, nanocrystals, nanofibers, nanoyarns, bacterial nanocellulose) used in skincare, cosmetics, and healthcare. The specific properties of nanocelluloses for skincare include high viscosity and shear thinning properties, surface functionality, dispersion stability, water-holding capacity, purity, and biocompatibility. Depending on their morphology (e.g. size, aspect ratio, geometry, porosity), nanocelluloses can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. Nanocellulose composite particles were recently developed as carriers for bioactive compounds or UV-blockers and platforms for wound healing and skin sensors. As toxicological assessment depends on morphologies and intrinsic properties, stringent regulation is needed from the testing of efficient nanocellulose dosages. The challenges and perspectives for an industrial breakthrough are related to optimization of production and processing conditions.Although gelatinization property has been intensively investigated with its relation to starch structures, how a combination of starch molecular structures and moisture content affect the gelatinization remains unclear. The gelatinization of six rice starches with a wide range of amylose content was investigated under different moisture content in this study. Results showed that starch gelatinization temperatures increased and biphasic endothermic peaks appeared over the decreased moisture content. For the first time, amylose content was shown to have a parabolic relationship with gelatinization temperatures. Distinct linear relations among starch fine molecular structures with gelatinization parameters were observed under different moisture contents, which suggested that amylose short chains were involved in the first endothermic peak, while interactions among amylose intermediate chains and relatively shorter amylopectin trans-lamellar chains dominantly contributed to the second endothermic peak when gelatinized under limited moisture content. These results help in better understanding of starch structure-gelatinization relation.To achieve synergistic reinforcing and cross-linking effect across interface between hydrophilic nanocellulose and hydrophobic rubber, active thiol groups were introduced at reducing end of CNF while retaining hydroxyl groups on the surface, thus forming a percolation network in nanocomposites. The nanocomposites were obtained by casting/evaporating a mixture of dispersed modified CNF and NR in latex form, in which covalent cross-links were formed between thiol groups and double bonds of NR via photochemically initiated thiol-ene reaction. Strong interfacial interaction between NR matrix and end-modified CNF was characterized by Fourier-transform infrared spectroscopy. The structural and mechanical properties of the nanocomposites were evaluated by scanning electron microscopy, dynamic mechanical analysis and tensile tests. Compared to neat NR, the nanocomposite reinforced with 10 wt% modified CNF showed significantly higher values of tensile strength (0.33 to 5.83 MPa), Young's modulus (0.48 to 45.25 MPa) and toughness (2.63 to 22.24 MJ m-3).Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.Paenibacillus polymyxa is an avid producer of exopolysaccharides of industrial interest. However, due to the complexity of the polymer composition, structural elucidation of the polysaccharide remained unfeasible for a long time. By using a CRISPR-Cas9 mediated knock-out strategy, all single glycosyltransferases as well as the Wzy polymerases were individually deleted in the corresponding gene cluster for the first time. Thereby, it was observed that the main polymer fraction was completely suppressed (or deleted) and a pure minor fucose containing polysaccharide could be isolated, which was named paenan II. Applying this combinatorial approach, the monosaccharide composition, sequence and linkage pattern of this novel polymer was determined via HPLC-MS, GC-MS and NMR. Furthermore, we demonstrated that the knock-out of the glycosyltransferases PepQ, PepT, PepU and PepV as well as of the Wzy polymerase PepG led to the absence of paenan II, attributing those enzymes to the assembly of the repeating unit.We developed a self-degradable medical adhesive, LYDEX, consisting of periodate-oxidized aldehyde-functionalized dextran (AD) and succinic anhydride-treated ε-poly-l-lysine (SAPL). After gelation and adhesion of LYDEX by Schiff base bond formation between the AD aldehyde groups and SAPL amino groups, molecular degradation associated with the Maillard reaction is initiated, but the detailed degradation mechanism remains unknown. Herein, we elucidated the degradation mechanism of LYDEX by analyzing the main degradation products under typical solution conditions in vitro. The degradation of the LYDEX gel with a sodium periodate/dextran content of 2.5/20 was observed using gel permeation chromatography and infrared and 1H NMR spectroscopy. The AD ratio in the AD-SAPL mixture increased as the molecular weight decreased with the degradation time. This discovery of LYDEX self-degradability is useful for clarifying other polysaccharide hydrogel degradation mechanisms, and valuable for the use of LYDEX in medical applications, such as hemostatic or sealant materials.Cancer is a complex disease, and blocking tumor angiogenesis has become one of the most promising approaches in cancer therapy. Here, an exopoly heteropolysaccharide (AQP70-2B) was firstly isolated from Akebia quinata. Monosaccharide composition indicated that the AQP70-2B was composed of rhamnose, glucose, galactose, and arabinose. The backbone of AQP70-2B consisted of →1)-l-Araf, →3)-l-Araf-(1→, →5)-l-Araf-(1→, →3,5)-l-Araf-(1→, →2,5)-l-Araf-(1→, →4)-d-Glcp-(1→, →6)-d-Galp-(1→, and →1)-d-Rhap residues. Based on the close relationship between selenium and anti-tumor activity, AQP70-2B was modified with selenium to obtain selenized polysaccharide Se-AQP70-2B. Then, a series of methods for analysis and characterization, especially scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), indicated that Se-AQP70-2B was successfully synthesized. Furthermore, zebrafish xenografts and anti-angiogenesis experiments indicated that selenization could improve the antitumor activity by inhibiting tumor cell proliferation and migration and blocking angiogenesis.Creating a low-cost, highly efficient, and recyclable superabsorbent for spilled-oil cleanup is of great significance but remains a big challenge. Herein, we report a facile strategy to produce economic, environmentally friendly, and reusable foam from agricultural waste kapok fibers. These kapok-derived cellulose nanofibrils foams (KNFs) demonstrate a hierarchically porous structure at micro-level with ultra-low density (2.7 mg·cm-3). The superhydrophobic KNFs (150.5°) show outstanding oil absorption (126.8-320.4 g·g-1) and oil-water separation performance. Notably, a facile approach is designed to reuse KNFs easily by a homemade oil release system. The release behavior of the KNFs is quantitatively analyzed and confirmed by the Rigter-Peppas model, indicating that the oil release followed the Fickian diffusion. The KNFs exhibit desirable reusability, and can be recycled for at least 50 times while keeping excellent oil absorption, and release performance. These advantages prove that the KNF is a desirable substitute for spilled-oil treatment.Here, a facile method to fabricate cellulose nanocrystals (CNCs) with high yield from microcrystalline cellulose (MCC) at room temperature (RT) is achieved by using a new solvent system of zinc chloride (ZnCl2) and a little amount of hydrochloric acid (HCl). Compared with sulphuric acid hydrolysis process, about one-fifth mole of acid is used for per gram of CNCs in our protocol. CNCs with rod-like morphology are regenerated with a maximum yield of 35.2% and high crystallinity of 73.8%. Moreover, with an additional 2 h of ball-milling, the yield of CNCs could significantly increase to 66.9% at RT. The possible formation mechanism for CNCs prepared by the solvent system of ZnCl2/HCl is proposed. As the first example of isolation of CNCs with high yield at RT using ZnCl2, this work provides a facile, energy-saving, and practical strategy for the preparation of cellulose nanomaterials.

Autoři článku: Colepeck1715 (Hyldgaard Haastrup)