Axelsenchan7222

Z Iurium Wiki

Verze z 2. 10. 2024, 15:26, kterou vytvořil Axelsenchan7222 (diskuse | příspěvky) (Založena nová stránka s textem „They also show that HT effects dominate the shapes of EMI and CPL, tuning the relative heights of the different vibronic peaks, improving the agreement wit…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

They also show that HT effects dominate the shapes of EMI and CPL, tuning the relative heights of the different vibronic peaks, improving the agreement with the experiment for EMI. Moreover, HT effects are the main reason for the mirror-symmetry breaking between ECD and CPL spectra. Furthermore, interesting interference effects between FC and HT contributions have also been addressed. Essential oils derived from medicinal plants are prosperous sources of active components having high biological potential. Cuminaldehye and isoeugenol, are hydrophobic essential oil components (EOC), are showing drastic limitations in their applications by low water solubility and the respective volatility. Methyl-β-cyclodextrin inclusion complexes (MβCD-ICs) were prepared in aqueous solution and in solid state with the EOC via the ultrasonication method, an energy saving, high efficiency and eco-friend technique, aim to extend their aqueous solubility and biological properties. UV-Vis absorption, fluorescence, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD) and computational simulations confirmed the formation of EOC/MβCD-ICs. Result of solubility studies proved the enhanced solubilization of EOC in the presence of MβCD in aqueous and double reciprocal profiles substantiated the guest/host stoichiometry of 11. TGA and DSC studies indicated the improved stability of EOC in MβCD-ICs. The efficiency of ICs in terms of the antioxidant activity was verified and the IC displayed higher antioxidant activity compared to that of free EOC, as determined by free radical scavenging assay. Finally, the antibacterial effect of EOC/MβCD-ICs against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacteria was demonstrated. Overall results not only revealed the potential of MβCD on the bioavailability, solubility and stability, but also that the intensification caused by the IC may be greater that the antioxidant and antibacterial effects of the selected EOC for this study. The precursor lesion of vulvar squamous cell carcinoma (VSCC), namely vulvar intraepithelial neoplasia (VIN), is classified as human papillomavirus (HPV)-related high grade squamous intraepithelial lesion (HSIL), and HPV-independent differentiated VIN (dVIN). Traditionally, histology and immunohistochemistry (IHC) have been the basis of diagnosis and classification of VIN. HSIL shows conspicuous histological atypia, and positivity on p16-IHC, whereas dVIN shows less obvious histological atypia, and overexpression or null-pattern on p53-IHC. For both types of VIN, other diagnostic immunohistochemical markers have also been evaluated. Molecular characterization of VIN has been attempted in few recent studies, and novel genotypic subtypes of HPV-independent VSCC and VIN have been identified. This systematic review appraises the VSCC precursors identified so far, focusing on histology and biomarkers (immunohistochemical and molecular). To gain further insights into the carcinogenesis and to identify additional potential biomarkers, gene expression omnibus (GEO) datasets on VSCC were analyzed; the results are presented. As in conventional 1H MRI, T1 and T2 relaxation times of hyperpolarized (HP) 13C nuclei can provide important biomedical information. Two new approaches were developed for simultaneous T1 and T2 mapping of HP 13C probes based on balanced steady state free precession (bSSFP) acquisitions a method based on sequential T1 and T2 mapping modules, and a model-based joint T1/T2 approach analogous to MR fingerprinting. These new methods were tested in simulations, HP 13C phantoms, and in vivo in normal Sprague-Dawley rats. Non-localized T1 values, low flip angle EPI T1 maps, bSSFP T2 maps, and Bloch-Siegert B1 maps were also acquired for comparison. T1 and T2 maps acquired using both approaches were in good agreement with both literature values and data from comparative acquisitions. Multiple HP 13C compounds were successfully mapped, with their relaxation time parameters measured within heart, liver, kidneys, and vasculature in one acquisition for the first time. A coupled microbial electrolysis cell - anaerobic granular sludge system (MEC-AGS) was established to explore the degradation efficiency of 2,4,6-trichlorophenol (TCP) with synchronous biogas production. Results showed that MEC-AGS yielded a higher proportion of CH4 than MEC (83.8 ± 0.4% vs 82.0 ± 1.0%, P  less then  0.05) with sodium acetate (NaAc) as the only carbon source. Moreover, MEC-AGS had higher tolerance to the addition of TCP, with the highest TCP degradation efficiency of 45.5 ± 0.5% under 5 mg L-1 of TCP addition in 24 h. Furthermore, microbial community structures were significantly changed based on community composition, hierarchical cluster and PCoA analysis, which proved that MEC-AGS favored the enrichment of dechlorination-related microbes such as Pseudomonas, Desulfovibrio and Longilinea, as well as their syntrophic bacteria of Anaerolineacea, Syntrophobacter, Arcobacter, etc. The coupled system provides a promising strategy for biogas production from wastewater with recalcitrant organics. Anaerobic co-digestion (AcoD) of the main residues from the non-centrifugal cane sugar (NCS) making process, agricultural crop residues (ACR) and sugarcane scum (SCS), was evaluated using biochemical methane potential tests. Substrates were pretreated ACR through particle size reduction, and SCS with dilution. The maximum methane yield of 0.276 Nm3 CH4 kg-1 VSadded occurred at an ACR of 2 mm and at 12.5% dilution of SCS, at a ratio of 7525 based on volatile solids, which was 30.2% and 5.9% higher compared to SCS and ACR in mono-digestion, respectively. ACR was a substrate of adequate buffer capacity for the AcoD stability, while the SCS, in addition to helping accelerate the process, also helped improve the inoculum's methanogenic and hydrolytic activity. The first-order kinetic and dual-pool two-step models were suitable to describe methane yield. AcoD of ACR with SCS is a good option for the treatment of streams in the NCS agribusiness sector. Chlorella is widely distributed, can be cultured in waste water and had short growth cycle. The high carbohydrate composition shows great potential for bioenergy output. In this work, concentrated Chlorella solution was adopted as raw material. Reducing sugar concentration, pH, and cumulative bio-hydrogen yield were taken as indexes, the effects of substrate concentration and enzyme (cellulase or neutral protease) load on photo-fermentation bio-hydrogen production process from microalgae biomass were investigated. Results showed that highest cumulative hydrogen yield was obtained at the optimal substrate concentration of 25 g/L, when the load of cellulase and protease are both 15%, the effect is the best which were 16.65 mL, 29.44 mL, and 43.62 mL, respectively. Results fitted well to the Gompertz model, indicating the feasibility of photo-fermentative bio-hydrogen production from concentrated Chlorella. The present study aimed to employ energy efficient chemo thermal coupled sonic homogenization (CTSH) to obtain VFA from marine macroalgal hydrolysate, (Ulva fasciata). At first, chemo thermal homogenization (CTH) was applied on macroalgal biomass by adjusting the temperature, pH and treatment time from 60 to 90 ℃, 4-7 and 0-60 min, respectively. A higher organic matter solubilisation of 11.81% was obtained at an optimum pH of 6 at a temperature of 80 ℃ with 40 min of homogenization time. The results of CTSH implied that a higher organic matter solubilization of 26.4% was achieved by combined CTSH (sonic power & treatment time - 140 W & 14 min treatment time). CTSH considerably doubles the liquefaction in comparison with CTH. Based on OMS grouping, achieving 25% was sufficient for VFA production (2172.09 mg/L) and considered as economically feasible with net cost of 97.17 USD/ton of macroalgae. Reduction in water consumption and increase in ethanol concentration are two main challenges for bioethanol production from lignocellulosic materials. To address the two challenges, the aim of this work was to study the production of bioethanol from unwashed-pretreated rapeseed straw (RS) at high solid loading. RS pretreated with 1% (w w-1) H2SO4 at 160 °C for 10 min resulted in excellent digestibility and fermentability of pretreated RS. The unwashed-pretreated RS was subjected to presaccharification and fed-batch simultaneous saccharification and fermentation (P-FB-SSF) at a final solid loading of 22% (w w-1). Ethanol concentration and ethanol yield of 53.1 g L-1 (equivalent to 4.1% (w w-1) based on fermentation slurry) and 72.4% were obtained, respectively. In total, 92.1 g water g-1 ethanol was consumed, a much smaller amount than that observed with washing after pretreatment or fermentation performed at lower solid loading. A heterotrophic nitrifying and aerobic denitrifying fungus was isolated from lake water and identified as Penicillium tropicum strain IS0293. The strain exhibited efficient heterotrophic nitrification-aerobic denitrification ability and could utilize ammonium, nitrite and nitrate as a sole nitrogen source. Batch tests demonstrated that strain IS0293 can remove nitrate using variety of organic carbon compounds as carbon sources. The effect of woodchip leachate collected at different degradation times on denitrification performance of the strain was also investigated. Furthermore, two denitrifying woodchip bioreactors were constructed to assess the bioaugmention of strain IS0293 for nitrate removal from surface water. Results demonstrated that the incubation of strain IS0293 enhanced the nitrate removal efficiency of the bioreactor. In addition, the average effluent TOC content of the bioaugmention bioreactor was 38.22% lower than the control bioreactor. This study would be valuable to develop an effective technology for nitrate-laden surface water under aerobic conditions. Vine shoots are the viticulture residues generated in high quantities after the grapevine pruning. Calcitriol chemical structure They are lignocellulosic material poorly exploited as feedstock. These wastes are often dumped in the agriculture fields or burnt. Due to their availability and relatively low price, vine shoots are considered as potential feedstock for biochemical conversion into value-added products. In this work, two biorefinery scenarios using vine shoots as feedstock to co-produce chemicals are assessed from an environmental point of view production of lactic acid, and co-production of lactic acid and furfural. A CHP area was considered to be annexed to the plants to produce heat and electricity for internal use. The Aspen Plus and SimaPro commercial software were used to perform the LCA of the selected scenarios. The assessed scenarios demonstrate significant reductions in climate change, fossil fuel depletion, freshwater ecotoxicity and eutrophication and human toxicity impacts compared to their counterfactual systems. Success of composting as an ecological technology for organic waste management has allowed its implementation in the current circular economy models. However, composting on an industrial scale often shows drawbacks and peculiarities. In this work, a comparative analysis of 15 industrial composting facilities was carried out in which different anthropogenic organic waste were processed. Results showed that composting process on an industrial scale did not always evolve in a standard way. Monitoring parameters as well as enzymatic activity depended largely on the raw materials and were strongly linked to the transformation of nitrogen fractions. Despite the heterogeneity of the processes and raw materials, microbial activity managed to the optimal biotransformation, obtaining products that comply with the agronomic quality standards. This work represents a breakthrough in composting and provides new knowledge for better management of this process on an industrial scale.

Autoři článku: Axelsenchan7222 (Holloway Giles)