Foleydoyle3376
The enrichment of the durum wheat flour with 5% purslane resulted in a good compromise to obtain good rheological characteristics of loaves and breads with decreased omega-6/omega-3 ratio and good antioxidant properties.Alternative RNA splicing impacts the majority (>90%) of eukaryotic multi-exon genes, expanding the coding capacity and regulating the abundance of gene isoforms. Telomerase (hTERT) is a key example of a gene that is alternatively spliced during human fetal development and becomes dysregulated in nearly all cancers. Approximately 90% of human tumors use telomerase to synthesize de novo telomere repeats and obtain telomere-dependent cellular immortality. Paradigm shifting data indicates that hTERT alternative splicing, in addition to transcription, plays an important role in the regulation of active telomerase in cells. Our group and others are pursuing the basic science studies to progress this emerging area of telomerase biology. Recent evidence demonstrates that switching splicing of hTERT from the telomerase activity producing full-length hTERT isoform to alternatively spliced, non-coding isoforms may be a novel telomerase inhibition strategy to prevent cancer growth and survival. Thus, the goals of this review are to detail the general roles of telomerase in cancer development, explore the emerging regulatory mechanisms of alternative RNA splicing of the hTERT gene in various somatic and cancer cell types, define the known and potential roles of hTERT splice isoforms in cancer cell biology, and provide insight into new treatment strategies targeting hTERT in telomerase-positive cancers.Arteriogenesis, also frequently called collateral formation or even therapeutic angiogenesis, comprises those processes that lead to the formation and growth of collateral blood vessels that can act as natural bypasses to restore blood flow to distal tissues in occluded arteries [...].Salinity is a major constraint limiting plant growth and productivity worldwide. Thus, understanding the mechanism underlying plant stress response is of importance to developing new approaches that will increase salt tolerance in crops. This study reports the effects of salt stress on Sorghum bicolor during germination and the role of calcium (Ca2+) to ameliorate some of the effects of salt. To this end, sorghum seeds were germinated in the presence and absence of different NaCl (200 and 300 mM) and Ca2+ (5, 15, or 35 mM) concentrations. Salt stress delayed germination, reduced growth, increased proline, and hydrogen peroxide (H2O2) contents. Salt also induced the expression of key antioxidant (ascorbate peroxidase and catalase) and the Salt Overlay Sensitive1 genes, whereas in the presence of Ca2+ their expression was reduced except for the vacuolar Na+/H+ exchanger antiporter2 gene, which increased by 65-fold compared to the control. Ca2+ reversed the salt-induced delayed germination and promoted seedling growth, which was concomitant with reduced H2O2 and Na+/K+ ratio, indicating a protective effect. Ca2+ also effectively protected the sorghum epidermis and xylem layers from severe damage caused by salt stress. Taken together, our findings suggest that sorghum on its own responds to high salt stress through modulation of osmoprotectants and regulation of stress-responsive genes. Selleck Buloxibutid Finally, 5 mM exogenously applied Ca2+ was most effective in enhancing salt stress tolerance by counteracting oxidative stress and improving Na+/K+ ratio, which in turn improved germination efficiency and root growth in seedlings stressed by high NaCl.Hypothesizing that pulmonary artery diameter is a marker of subclinical pulmonary hypertension, we assessed its impact on postoperative outcome in patients requiring pneumonectomy. Morphometric, clinical, and laboratory data were retrospectively retrieved from files of 294 consecutive patients treated by pneumonectomy for malignancy (289 NSCLC). Pulmonary artery was measured at bifurcation level on CT scan and normalized by body surface area. Median normalized pulmonary artery diameter (cut-off for analyses) was 14 mm/m2. Postoperatively, 46 patients required re-do intubation and 30 had acute respiratory distress syndrome (ARDS). Multivariate analysis showed that Charlson Comorbidity Index >5 (p = 0.0009, OR 3.8 [1.76-8.22]), right side of pneumonectomy (p = 0.013, OR 2.37 [1.20-4.71]), and higher normalized pulmonary artery diameter (p = 0.029, OR 2.16 [1.08-4.33]) were independent predictors of re-do intubation, while Charlson Comorbidity Index >5 (p = 0.018, OR 2.55 [1.17-5.59]) and higher normalized pulmonary artery diameter (p = 0.028, OR = 2.52 [1.10-5.77]) were independently associated with occurrence of ARDS. Post-operative mortality was 8.5%. Higher normalized pulmonary artery diameter, (p = 0.026, OR 3.39[1.15-9.95]), right side of pneumonectomy (p = 0.0074, OR 4.11 [1.46-11.56]), and Charlson Comorbidity Index >5 (p = 0.0011, OR 5.56 [1.99-15.54]) were independent predictors of postoperative death. We conclude that pre-operative normalized pulmonary artery diameter predicts the risk of re-do intubation, ARDS and mortality in patients undergoing pneumonectomy for cancer.Recent advances in neurobiology have provided several molecular entrees for targeted treatments for Fragile X syndrome (FXS). However, the efficacy of these treatments has been demonstrated mainly in animal models and has not been consistently predictive of targeted drugs' response in the preponderance of human clinical trials. Because of the heterogeneity of FXS at various levels, including the molecular level, phenotypic manifestation, and drug response, it is critically important to identify biomarkers that can help in patient stratification and prediction of therapeutic efficacy. The primary objective of this study was to assess the ability of molecular biomarkers to predict phenotypic subgroups, symptom severity, and treatment response to metformin in clinically treated patients with FXS. We specifically tested a triplex protein array comprising of hexokinase 1 (HK1), RAS (all isoforms), and Matrix Metalloproteinase 9 (MMP9) that we previously demonstrated were dysregulated in the FXS mouse model and in blood samples from patient with FXS.