Lupetty5580

Z Iurium Wiki

Verze z 2. 10. 2024, 14:01, kterou vytvořil Lupetty5580 (diskuse | příspěvky) (Založena nová stránka s textem „SEM micrograph shows the flexibility of the thin layer coated onto the stent after balloon inflation. Independently of the strategy, a qualitative SEM anal…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

SEM micrograph shows the flexibility of the thin layer coated onto the stent after balloon inflation. Independently of the strategy, a qualitative SEM analysis showed a reduction in platelet activation when the molecule EP224283 was immobilised on avidin. In parallel, the measurement of anticoagulant activity (anti-Xa) revealed a higher anti-factor Xa activity (2.24 IU/mL vs. 0.09 IU/mL in control) when EP224283 was immobilised on avidin. Interestingly, after seven days of degradation, the anticoagulant activity was persistent in both strategies and looked more important with the strategy 2 than in strategy 1. Throughout this work, we developed an innovative vascular stent through the immobilisation of EP224283 onto CoCr-PDA-PEI-(avidin) system, which provides a promising solution to reduce ISR and thrombosis after stent implantation.The engineering of biomaterial surfaces and scaffolds for specific biomedical and clinical application is of growing interest. Certain functionalised surfaces can capture and deliver bioactive molecules, such as growth factors (GF), enhancing the clinical efficacy of such systems. With a custom-made plasma polymerisation reactor described here we have developed bioactive polymer coatings based on poly(ethyl acrylate) (PEA). RP-3500 ATM inhibitor This remarkable polymer unfolds fibronectin (FN) upon adsorption to allow the GF binding region of FN to sequester and present GFs with high efficiency. We systematically evaluate process conditions and their impact on plasma polymerised PEA coatings and characterise the effect of plasma power and deposition time on thickness, wettability and chemical composition of the coatings. We demonstrate that functional substrate roughness can be maintained after deposition of the polymer coatings. Importantly, we show that coatings deposited at different conditions all maintain a similar or better bioactivity than spin coated PEA references. We show that in PEA plasma polymerised coatings FN assembles into nanonetworks with high availability of integrin and GF binding regions that sequester bone morphogenetic protein-2 (BMP-2). We also report similar mesenchymal stem cell adhesion behaviour, as characterised by focal adhesions, and differentiation potential on BMP-2 coated surfaces, regardless of plasma deposition conditions. This is a potent and versatile technology that can help facilitate the use of GFs in clinical applications.In the last two decades, marine collagen has attracted great scientific and industrial interest as a 'blue resource', with potential for use in various health-related sectors, such as food, medicine, pharmaceutics and cosmetics. In particular, the large availability of polluting by-products from the fish processing industry has been the key factor driving the research towards the conversion of these low cost by-products (e.g. fish skin and scales) into collagen-based products with high added value and low environmental impact. After addressing the extraction of collagen from aquatic sources and its physicochemical properties, this review focuses on the use of marine collagen and its derivatives (e.g. link2 gelatin and peptides) in different healthcare sectors. Particular attention is given to the bioactive properties of marine collagen that are being explored in preclinical and clinical studies, and pave the way to an increased demand for this biomaterial in the next future. In this context, in addition to the use of native collagen for the development of tissue engineering or wound healing devices, particularly relevant is the use of gelatin and peptides for the development of dietary supplements and nutraceuticals, specifically directed to weight management and glycemic control. The marine collagen market is also briefly discussed to highlight the opportunities and the most profitable areas of interest.Biologically relevant synthetic hydroxyapatite (HA) has become a much-desired material for use within the medical field with an emphasis on orthopedic applications. However, there are very few sources of sub-micron scale HA powders that are economical. Many current procedures to generate synthetic HA, that is both biological and chemically analogous to naturally occurring HA, tend to involve complicated synthesis procedures that are difficult to simultaneously produce desired stoichiometric ratios and particle diameter. This paper reports the development of a one-step hydrothermal method with in situ ball milling of synthetic HA. That has the potential to be a biological substitute with similar calcium to phosphate stoichiometric ratio and particle diameter of HA found in many natural biologically occulting sources. Parameters affecting particle diameter investigated included varying ball milling media, in situ and ex situ ball milling, and simultaneous agitation. The stoichiometric ratios of the resulting powders indicated that 4-hour hydrothermal reaction time produced materials that are analogous to natural HA, confirmed from spectra acquired via Fourier Transform Infrared spectroscopy (FT-IR). X-ray diffraction and Scanning Electron Microscopy both indicate that the predominant size of primary crystallites is around ~25 nm. Particle size distributions of dried in situ ball-milled HA suggest that primary crystallites exist as aggregates, with aggregate diameters ranging between 1 and 100 μm.Decellularized human lung fibroblast-derived matrix (hFDM) has demonstrated its excellent proangiogenic capability. In this study, we propose a self-assembled, injectable multicellular microspheres containing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cell (MSCs), collagen hydrogel (Col), and hFDM toward therapeutic angiogenesis. Those multicellular microspheres are spontaneously formed by the mixtures of cell and hydrogel after being dropped on the parafilm for several hours. The size of microspheres can be manipulated via adjusting the initial volume of droplets and the culture period. The cells in the microspheres are highly viable. Multicellular microspheres show good capability of cell migration on 2D culture plate and also exhibit active cell sprouting in 3D environment (Col) forming capillary-like structures. We also find that multiple angiogenic-related factors are significantly upregulated with the multicellular microspheres prepared via Col and hFDM (Col/hFDM) than those prepared using Col alone or single cells (harvested from cocultured HUVECs/MSCs in monolayer). For therapeutic efficacy evaluation, three different groups of single cells, Col and Col/hFDM microspheres are injected to a hindlimb ischemic model, respectively, along with PBS injection as a control group. It is notable that Col/hFDM microspheres significantly improve the blood reperfusion and greatly attenuate the fibrosis level of the ischemic regions. In addition, Col/hFDM microspheres show higher cell engraftment level than that of the other groups. The incorporation of transplanted cells with host vasculature is detectable only with the treatment of Col/hFDM. Current results suggest that hFDM plays an important role in the multicellular microspheres for angiogenic cellular functions in vitro as well as in vivo. Taken together, our injectable multicellular microspheres (Col/hFDM) offer a very promising platform for cell delivery and tissue regenerative applications.Developing new materials with high strength and ductility, low modulus and high biocompatibility is a continuing demand in the field of surgical implants. Inspired by the high-entropy design philosophy, two medium entropy alloys (MEAs), i.e. equiatomic TiZrHf and equi-weight Ti40Zr20Hf10Nb20Ta10 were designed and their mechanical properties and biocompatibility were assessed. Both the single-phase hexagonal close-packed (HCP) structured TiZrHf alloy and the single-phase body-centered cubic (BCC) structured Ti40Zr20Hf10Nb20Ta10 alloy show high strength-ductility combinations close to commercial Ti-6Al-4V wrought alloy and remarkably lower young's modulus than commercial pure titanium (CP-Ti) and Ti-6Al-4V. From the aspects of adhesion, proliferation, toxicity and related gene expression of human gingival fibroblasts (HGFs), the Ti40Zr20Hf10Nb20Ta10 alloy exhibits distinctively better biocompatibility than that of CP-Ti while the TiZrHf shows only slightly better biocompatibility as compared with CP-Ti. These results indicate that these two ductile MEAs are potential candidates for dental application.Known techniques for modification of polypropylene membranes (PPm) often require modification of the membrane in its entire volume (i.e. at the manufacturing stage), which may affect its properties. In the present work, the authors proposed a simple method for PPm hydrophilization. The process involves a two-step Fenton-type reaction, with ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and cumene hydroperoxide (CHP) as a source of free radicals. This hydrogel coating aims to enhance membrane hemocompatible and biocompatible properties. The biggest advantage of the proposed technique is the change of materials' surface properties, without interfering with its internal structure. Microscopic (SEM) and spectroscopic (FTIR-ATR) analyses confirmed the presence of hydrogel coating on PPm surfaces. Additionally, the evaluation of the surface density of the coating showed that the thickness of the coating increases with the reaction time and CHP concentration. The applied coatings significantly increase surface hydrophilicity (contact angle for PPm 128.58° ± 0.52°, for all modified surfaces less then 53.31° ± 2.03°). The cytotoxicity test (XTT assay) proved biocompatibility of the PVP coating - cell viability remained above 90% for all variants tested. The modification resulted in a decrease in fibrinogen adsorption (of at least about 16%) and in a number of surface-adhered platelets. The assay evaluating the amount of secreted cell adhesion molecules (ICAM-1) showed a significant reduction (of at least about 50%) in the expression of ICAM-1 for all hydrogel-modified surfaces.In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated that the freeze gelation method was successful in obtaining porous morphologies for all the fabricated alginate-gelatin samples as previously was seen in single-polymer fabrication using this method. The alginate to gelatin ratio affected swelling, biodegradation, cell culture and mechanical properties of the matrices. The scaffold with the lowest content of gelatin had the highest swelling ratio while biodegradation and cell proliferation and viability were increased with the gelatin content. Regarding the mechanical properties, as the gelatin content increased, the scaffold became more ductile and showed higher tensile strength. The in-vivo results also showed the biocompatibility of the blend scaffold and its positive role in wound healing process in rats. link3 The low-cost procedure used in this study to fabricate the porous alginate-gelatin scaffolds can be adapted and modified to suit different tissue engineering applications.

Autoři článku: Lupetty5580 (Gregory Law)