Starreason4250

Z Iurium Wiki

Verze z 2. 10. 2024, 13:59, kterou vytvořil Starreason4250 (diskuse | příspěvky) (Založena nová stránka s textem „h glucose-induced injuries of CSMC mediated by EC-CSMC crosstalk. Copyright © 2020 Yang Luan et al.The nuclear transcription factor p53, discovered in 197…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

h glucose-induced injuries of CSMC mediated by EC-CSMC crosstalk. Copyright © 2020 Yang Luan et al.The nuclear transcription factor p53, discovered in 1979, has a broad range of biological functions, primarily the regulation of apoptosis, the cell cycle, and DNA repair. In addition to these canonical functions, a growing body of evidence suggests that p53 plays an important role in regulating intracellular redox homeostasis through transcriptional and nontranscriptional mechanisms. Oxidative stress induction and p53 activation are common responses to chemical exposure and are suggested to play critical roles in chemical-induced toxicity. The activation of p53 can exert either prooxidant or antioxidant activity, depending on the context. In this review, we discuss the functional role of p53 in regulating chemical-induced oxidative stress, summarize the potential signaling pathways involved in p53's regulation of chemically mediated oxidative stress, and propose issues that should be addressed in future studies to improve understanding of the relationship between p53 and chemical-induced oxidative stress. Copyright © 2020 Xiaoyi Liu et al.Objective The mechanism of enhanced radiosensitivity induced by mitochondrial uncoupling protein UCP2 was investigated in HeLa cells to provide a theoretical basis as a novel target for cervical cancer treatment. https://www.selleckchem.com/products/Imatinib-Mesylate.html Methods HeLa cells were irradiated with 4 Gy X-radiation at 1.0 Gy/min. The expression of UCP2 mRNA and protein was assayed by real-time quantitative polymerase chain reaction and western blotting. UCP2 siRNA and negative control siRNA fragments were constructed and transfected into HeLa cells 24 h after irradiation. The effect of UCP2 silencing and irradiation on HeLa cells was determined by colony formation, CCK-8 cell viability, γH2AX immunofluorescence assay of DNA damage, Annexin V-FITC/PI apoptosis assay, and propidium iodide cell cycle assay. The effects on mitochondrial structure and function were investigated with fluorescent probes including dichlorodihydrofluorescein diacetate (DCFH-DA) assay of reactive oxygen species (ROS), rhodamine 123, and MitoTracker Green assay of mitochondrial structure and function. Results Irradiation upregulated UCP2 expression, and UCP2 knockdown decreased the survival of irradiated HeLa cells. UCP2 silencing sensitized HeLa cells to irradiation-induced DNA damage and led to increased apoptosis, cell cycle arrest in G2/M, and increased mitochondrial ROS. Increased radiosensitivity was associated with an activation of P53, decreased Bcl-2, Bcl-xl, cyclin B, CDC2, Ku70, and Rad51 expression, and increased Apaf-1, cytochrome c, caspase-3, and caspase-9 expression. Conclusions UCP2 inhibition augmented the radiosensitivity of cervical cancer cells, and it may be a potential target of radiotherapy of advanced cervical cancer. Copyright © 2020 Cui Hua Liu et al.Myocardial ischemic postconditioning- (IPo-) mediated cardioprotection against myocardial ischemia-reperfusion (IR) injury needs the activation of signal transducer and activator of transcription 3 (STAT3), which involves adiponectin (APN). APN confers its biological effects through AMP-activated protein kinase- (AMPK-) dependent and AMPK-independent pathways. However, the role of AMPK in APN-mediated STAT3 activation in IPo cardioprotection is unknown. We hypothesized that APN-mediated STAT3 activation in IPo is AMPK-independent and that APN through AMPK-dependent STAT3 activation facilitates IPo cardioprotection. Here, Sprague-Dawley rats were subjected to myocardial IR without or with IPo and/or APN. APN or IPo significantly improved postischemic cardiac function and reduced myocardial injury and oxidative stress, and their combination further attenuated postischemic myocardial injuries. APN or its combination with IPo but not IPo alone significantly increased AMPK activation and both nuclear and mitochondhu et al.Adropin is a secretory protein encoded by the energy balance gene and is closely associated with regulation of energy metabolism and insulin resistance. The clinical findings demonstrated its decreased expression in various inflammatory diseases, its negative correlation with the expression levels of inflammatory cytokines, and its potential anti-inflammatory effects. We speculate that adropin plays a pivotal regulatory role in immune cells and inflammatory factors. In this study, we reviewed the advances in researches concentrated on immunological effects of adropin. Copyright © 2020 Shuyu Zhang et al.There is a distinct increase in the risk of heart disease in people exposed to ionizing radiation (IR). Radiation-induced heart disease (RIHD) is one of the adverse side effects when people are exposed to ionizing radiation. IR may come from various forms, such as diagnostic imaging, radiotherapy for cancer treatment, nuclear disasters, and accidents. However, RIHD was mainly observed after radiotherapy for chest malignant tumors, especially left breast cancer. Radiation therapy (RT) has become one of the main ways to treat all kinds of cancer, which is used to reduce the recurrence of cancer and improve the survival rate of patients. The potential cause of radiation-induced cardiotoxicity is unclear, but it may be relevant to oxidative stress. Oxidative stress, an accumulation of reactive oxygen species (ROS), disrupts intracellular homeostasis through chemical modification and damages proteins, lipids, and DNA; therefore, it results in a series of related pathophysiological changes. The purpose of this review was to summarise the studies of oxidative stress in radiotherapy-induced cardiotoxicity and provide prevention and treatment methods to reduce cardiac damage. Copyright © 2020 Zhang Ping et al.Objectives Our previous study showed that aldose reductase (AR) played key roles in fatty liver ischemia-reperfusion (IR) injury by regulating inflammatory response and energy metabolism. Here, we aim to investigate the role and mechanism of AR in the regeneration of normal and fatty livers after liver surgery. Methods The association of AR expression with liver regeneration was studied in the rat small-for-size liver transplantation model and the mice major hepatectomy and hepatic IR injury model with or without fatty change. The direct role and mechanism of AR in liver regeneration was explored in the AR knockout mouse model. Results Delayed regeneration was detected in fatty liver after liver surgery in both rat and mouse models. Furthermore, the expression of AR was increased in liver after liver surgery, especially in fatty liver. In a functional study, the knockout of AR promoted liver regeneration at day 2 after major hepatectomy and IR injury. Compared to wild-type groups, the expressions of cyclins were increased in normal and fatty livers of AR knockout mice. AR inhibition increased the expressions of PPAR-α and PPAR-γ in both normal liver and fatty liver groups after major hepatectomy and IR injury. In addition, the knockout of AR promoted the expressions of SDHB, AMPK, SIRT1, and PGC1-α and PPAR. Conclusions The knockout of AR promoted the regeneration of normal and fatty livers through regulating energy metabolism. AR may be a new potential therapeutic target to accelerate liver regeneration after surgery. Copyright © 2020 Chang Xian Li et al.Although the mitochondrial antiviral signaling protein (MAVS), located in the mitochondrial outmembrane, is believed to be a signaling adaptor with antiviral feature firstly, it has been shown that suppression of MAVS enhanced radioresistance. The mechanisms underlying this radioresistance remain unclear. Our current study demonstrated that knockdown of MAVS alleviated the radiation-induced mitochondrial dysfunction (mitochondrial membrane potential disruption and ATP production), downregulated the expressions of proapoptotic proteins, and reduced the generation of ROS in cells after irradiation. Furthermore, inhibition of mitochondrial ROS by the mitochondria-targeted antioxidant MitoQ reduced amounts of oligomerized MAVS after irradiation compared with the control group and also prevented the incidence of MN and increased the survival fraction of normal A549 cells after irradiation. To our knowledge, it is the first report to indicate that MAVS, an innate immune signaling molecule, is involved in radiation response via its oligomerization mediated by radiation-induced ROS, which may be a potential target for the precise radiotherapy or radioprotection. Copyright © 2020 Yarong Du et al.Reactive oxygen species (ROS) are byproducts of a defective electron transport chain (ETC). link2 The redox couples, GSH/GSSG and NAD+/NADH, play an essential role in physiology as internal defenses against excessive ROS generation by facilitating intracellular/mitochondrial (mt) redox homeostasis. Anoxia alone and anoxia/reoxygenation (A/R) are dissimilar pathological processes. In this study, we measured the impact of capsaicin (Cap) on these pathological processes using a primary cultured neonatal rat cardiomyocyte in vitro model. The results showed that overproduction of ROS was tightly associated with disturbed GSH/GSSG and NAD+/NADH suppressed mt complex I and III activities, decreased oxygen consumption rates, and elevated extracellular acidification rates. During anoxia or A/R period, these indices interact with each other causing the mitochondrial function to worsen. Cap protected cardiomyocytes against the different stages of A/R injury by rescuing NAD+/NADH, GSH/GSSG, and mt complex I/III activities and cellular energy metabolism. Importantly, Cap-mediated upregulation of 14-3-3η, a protective phosphoserine-binding protein in cardiomyocytes, ameliorated mt function caused by a disruptive redox status and an impaired ETC. In conclusion, redox pair, mt complex I/III, and metabolic equilibrium were significantly different in anoxia alone and A/R injury; Cap through upregulating 14-3-3η plays a protection against the above injury in cardiomyocyte. Copyright © 2020 Yang Qiao et al.Follicular thyroid cancer (FTC) is a less common form of differentiated thyroid cancer. link3 Liver metastasis of differentiated thyroid cancer frequently occurs in the late onset of the metastatic disease, are often unrescetable and noniodine avid, leading to a poor prognosis. A 69-year-old man with a 14-year history of multi-metastatic follicular thyroid cancer was treated iteratively with 131-Iodine allowing to maintain a stable disease. Upon a recent exponential increase of the thyroglobulin, a peritoneal mass and a voluminous hepatic metastasis were discovered, comorbidities and an insufficient future remnant liver function excluded liver surgical resection. The tumour board proposed a resection of the peritoneal mass followed by selective internal radiation therapy of the liver mass. Due to the already impaired liver function, personalized dosimetry allowed a safe treatment delivering low activity to the nontumoral liver followed by a clinical and imaging response of the liver mass at 3 months. At our knowledge, this is the first case of thyroid liver metastasis treated by selective internal radiation therapy. © 2020 The Authors. Published by Elsevier Inc. on behalf of University of Washington.

Autoři článku: Starreason4250 (Hayden Mathis)