Hedegaardserrano2093

Z Iurium Wiki

Verze z 2. 10. 2024, 13:34, kterou vytvořil Hedegaardserrano2093 (diskuse | příspěvky) (Založena nová stránka s textem „Polypyrrole-luminol-AuNPs nanocomposites were prepared and used to develop a sensitive label-free electrochemiluminescence (ECL) immunosensor for carbohydr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Polypyrrole-luminol-AuNPs nanocomposites were prepared and used to develop a sensitive label-free electrochemiluminescence (ECL) immunosensor for carbohydrate antigen 153 (CA153) detection. Firstly, polypyrrole (PPY) nanoparticles were synthesized by a chemical oxidation method using FeCl3 as an oxidizing agent, then luminol and gold nanoparticles (AuNPs) were combined with PPY nanoparticles through electrostatic interaction to form PPY-luminol-AuNPs nanocomposites. The nanocomposites were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectra, atomic emission spectrometry (AES), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Especially, iron element was also detected in the nanocomposites. The PPY-luminol-AuNPs nanocomposites showed excellent ECL activity due to the bi-catalysis of iron ion and gold nanoparticles on the ECL of luminol. Furthermore, the nanocomposites showed good film-forming property, and it can be fixed on electrode surface without the assistance of other film-forming materials. On this basis, an ECL immunosensor for CA153 was constructed by covalently immobilizing anti-CA153 on PPY-luminol-AuNPs modified indium-doped tin oxide (ITO) electrode. In the presence of CA153, a remarkable decrease in ECL signals was observed due to the formation of anti-CA153/CA153 complex. The immunosensor showed a good linear relationship in the concentration range of 0.001 to 700 U/mL for CA153, and the detection limit was 5.8 × 10-4 U/mL (S/N = 3). Furthermore, the ECL immunosensor was applied to the determination of CA153 in practical human serum sample.A naphthalimide-based fluorophore (HONIOH) was designed by introducing a hydroxy unit into the 4th position of the aromatic core and a hydroxypropyl unit into the N-imide site. Photophysical properties of HONIOH were highly dependent on solvents, which was ascribed to the excited state proton transfer (ESPT) coupled with intramolecular charge transfer (ICT) mechanism. Further studies demonstrated that HONIOH can be used to recognize N, N-dimethylformamide (DMF) qualitatively and differentiate methanol from ethanol. Three control compounds were synthesized, their photophysical properties were investigated in various solvents, and experimental results revealed that hydroxyl and hydroxypropyl units contribute to the solvents differentiation ability of HONIOH. In addition, HONIOH was successfully applied as a colorimetric, fluorescent probe for the discriminative detection of trace water in organic solvents, such as fluorescence turn-on response accompanied by fluorescent color changes from light yellow to purple in DMF, and fluorescence turn-off response and blue to yellow fluorescent color changes in acetonitrile, tetrahydrofuran, and acetone. Compound 18 We believe that N-substituted 4-hydroxynaphthalimide derivatives may find widespread applications in chemical and biochemical sensing and imaging.We report on the observation of a gerade Rydberg electronic energy state of Cd2 van der Waals (vdW) complex vibrationally cooled in a free-jet expansion beam. Cd2 in the beam were excited from the X10g+(51S0) ground via the b30u+(53P1) intermediate to the final gerade state using optical-optical double resonance (OODR) method. A pronounced vibrational progression with partly resolved isotopologue components was recorded and analyzed. The analysis of isotopic separation indicated the excitation to high vibrational levels (υ'≈50). A comparison with the result of ab initio calculations reveals, that Cd2 was most probably excited to the 31g -state correlating with the 63S1 atomic asymptote.

Approximately 300 million people worldwide suffer from depression. The COVID-19 crisis may dramatically increase these numbers. Severe side effects and resistance development limit the use of standard antidepressants. The steroidal lactone withanolide A (WA) from Withania somnifera may be a promising alternative. Caenorhabditis elegans was used as model to explore WA's anti-depressive and anti-stress potential.

C. elegans wildtype (N2) and deficient strains (AQ866, DA1814, DA2100, DA2109 and MT9772) were used to assess oxidative, osmotic or heat stress as measured by generation of reactive oxygen species (ROS), determination of lifespan, and mRNA expression of serotonin receptor (ser-1, ser-4, ser-7) and serotonin transporter genes (mod-5). The protective effect of WA was compared to fluoxetine as clinically established antidepressant. Additionally, WA's effect on lifespan was determined. Furthermore, the binding affinities and pKi values of WA, fluoxetine and serotonin as natural ligand to Ser-1, Ser-4, nd increased lifespan by ROS scavenging and interference with the serotonin system. Hence, WA may serve as promising candidate to treat depression.

Cardiovascular diseases are caused by multitudes of stress factors like hypertension and their outcomes areassociated with high mortality and morbidity worldwide. Nerolidol, a naturally occurring sesquiterpene found in several plant species, embodies various pharmacological benefits against numerous health disorders. However, their effects on hypertension induced cardiac complications are not completely understood.

The present study is to elucidate the efficacy of nerolidol against hypertension related cardiac hypertrophy in spontaneously hypertensive rats (SHRs).

For preliminary in vitro studies, H9c2 cardiomyoblasts cells were challenged with 200 nM Angiotensin-II (AngII) for 12 h and were then treated with nerolidol for 24 h. The hypertrophic effect in H9c2 cells were analyzed by actin staining and the modulations in hypertrophic protein markers and mediators were determined by Western blotting analysis. For in vivo experiments, sixteen week-old male Wistar Kyoto (WKY) and SHRs were segregated into fe intriguing in vitro results were further confirmed in in vivo SHR model. Oral neraolidol in SHRs efficiently reduced blood pressure and ameliorated hypertension induced cardiac hypertrophic effects by effectively reducing the levels of proteins involved in cardiac MeL-18-HSF2-IGF-IIR signalling.

Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.

Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.

Autoři článku: Hedegaardserrano2093 (Due Boyette)