Overbybrix0064

Z Iurium Wiki

Verze z 2. 10. 2024, 00:09, kterou vytvořil Overbybrix0064 (diskuse | příspěvky) (Založena nová stránka s textem „The significant role of Tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an efficient additive during cycling of the layered nanostructured LiNi0.1Mg0.1Co0.8…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The significant role of Tris(2,2,2-trifluoroethyl) phosphite (TTFP) as an efficient additive during cycling of the layered nanostructured LiNi0.1Mg0.1Co0.8O₂ and olivine LiFePO₄ cathode materials in EC/DMC and 1M LiPF6 electrolyte for Li-ion battery are extensively investigated in this work. The electrochemical characterization techniques such as cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy show that TTFP improves cycling stability and reduces the irreversible capacity of LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ electrodes. Also, the presence of TTFP in electrolyte solution reduces the impedance in LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ cathode materials at room temperature. A family of Nyquist plots was obtained from LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ electrodes for various potentials during the course of charging. The addition of TTFP in the electrolyte reduces the surface impedance of lithiated LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ which can be attributed to the reaction of the additive on the electrode's surface. Also, the presence of the additive TTFP in LiNi0.1Mg0.1Co0.8O₂ and LiFePO₄ cell enhances the lithium diffusion rate and improves the electronic conductivity of the cathode material.Supercapacitor and hydrogen-based fuel cells are cheap and environmental-friendly next-generation energy storage devices that are intended to replace Lithium-ion batteries. Metal oxide nanostructures having perovskite crystal structure have been found to exhibit unique electrochemical properties owing to its unique electronic band structure and multiple redox-active ions. Herein, MgTiO₃ nanoparticles (MTO-1) were synthesized by wet-chemical sol-gel technique with an average particle size of 50-55 nm, which exhibited superior supercapacitor performance of capacitance (C) = 25 F/g (at 0.25 A/g), energy density (ED) = 17 Wh/kg, power density (PD) = 275 W/kg and 82.41% capacitance retention (after 1000 cycles). Aqueous 1 M Mg(ClO₄)₂ solution was used as the electrolyte. MTO-1 revealed an overpotential () = 1.329 V and Tafel slope (b) = 374 mV/dec towards Oxygen Evolution Reaction (OER) electrocatalyst and exhibited = 0.914 V and b = 301.4 mV/dec towards Hydrogen Evolution Reaction (HER) electrocatalyst, both in presence of alkaline 1 M KOH solution, making these MgTiO₃ nanoparticles very promising for potential use in various technologically important electrochemical applications.Studies on fabricating robust superhydrophobic surfaces by a low-cost method have been rare, despite the recent demand for nature-inspired superhydrophobic surfaces including self-healing ability in various industrial applications. Herein, we propose a fabrication method for self-healable, robust superhydrophobic nanocomposite films by facile solution-processed spray coating and UV curing. The components of the coating solution include functionalized hydrophobic silica nanoparticles for producing high roughness hierarchical textured structures with low surface energy, and UV-crosslinkable v-POSS and bi-thiol hydrocarbon molecules to improve the film stability. selleck kinase inhibitor As a result of the synergetic effect of the hydrophobic nanoparticles and UV-crosslinked polymeric compounds, the spray-coated and UV-cured nanocomposite films possess excellent superhydrophobicity (water contact angles > 150º) and high stability, in addition to self-healing abilities.The aim of this study was to explore the neurocognitive effects of dexmedetomidine-loaded gold nanoparticles (AuNPs-dexmedetomidine) on anesthetized rats. Sixty Sprague Dawley rats (age, 2-3 weeks; weight, 250-280 g) were randomly divided into three groups (n = 20) the control group and two groups that received intraperitoneal injection of AuNPs-dexmedetomidine at 50 and 100 μg/kg each. Western blotting and RT-PCR were used to determine the protein and mRNA expression of GSK-3β, respectively. Compared with that in the control group, GSK-3β expression in AuNP-dexmedetomidine groups increased (P less then 0.05). The protein expression of GSK-3β was higher and mRNA expression was significantly lower in the 100 μg/kg AuNP-dexmedetomidine group (P less then 0.05). AuNPs-dexmedetomidine reduced the neurocognitive effect on anesthetized rats through the regulation of the GSK-3β signaling pathway.This study aimed to investigate the effects of DMSO@γ-Fe₂O₃ nanomagnetic fluid thermotherapy combined with the chemotherapy drug carmustine on cervical cancer cells under a certain intensity of alternating magnetic field. And the role of Mir-590-3P in the development and progression of cervical cancer. The optimal thermotherapy concentration of γ-Fe₂O₃ nanomaterials on cervical cancer cells was determined by in vitro heating. In addition, the MTT colorimetric method was used to evaluate the toxic effect of γ-Fe₂O₃ magnetic nanoparticles on cervical cancer cells, and the optimal therapeutic concentration of carbachol on cervical cancer cells was optimized (0.015 g · L-1). The cervical cancer cells were divided into control, γ-Fe₂O₃ hyperthermia, chemotherapy, and DMSO@γ-Fe₂O₃ combined chemotherapy groups. After 2 h exposure to hypothermic conditions, flow cytometry was used to assess cell apoptosis for each group. The heating effect of the γ-Fe₂O₃ magnetic nanomaterials was apparent. When the concentration of ly enhanced the killing effect of carmustine on cervical cancer cells.Nanoemulsions were prepared using polyglycerol esters as emulsifiers. The effects of emulsifiers, oils, and polyols on the phase behavior of nanoemulsions were analyzed by phase diagram method using caprylic acid capric triglyceride (318), mineral oil, and squalane (Squ) as oils respectively. Various factors affecting the area of the oil-in-water (O/W) nanoemulsion were investigated. The results showed that hydrophilic polyglyceryl-4 laurate was beneficial to the formation of translucent nanoemulsions, while lipophilic polyglyceryl-4 oleate could synergize the emulsification performance and was more conducive to the formation of nanoemulsions; the type of oil could affect the emulsifying ability of the emulsifier. It was found that it was beneficial to form translucent nanoemulsion when caprylic acid capric triglyceride was adopted as oil. However, it was almost impossible to form translucent nanoemulsions when mineral oil and squalane were used as oils. The addition of water-soluble jojoba ester was beneficial to the formation of O/W emulsion. In addition, glycerin can improve the polarity of the aqueous medium, enhance the affinity between emulsifiers and aqueous medium, and help to form a translucent nanoemulsion.In this paper we study the Electron Statistics in Heavily Doped N Type-Intrinsic-P Type-Intrinsic structures of non-linear optical, tetragonal and opto-electronic materials in the presence of magnetic quantization. It is found taking such heavily doped structures of Cd₃As₂, CdGeAs₂, InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y as examples that the Fermi energy (EF) oscillates with inverse quantizing magnetic field (1/B) and increases with increasing electron concentration with different numerical magnitudes which is the signature of respective band structure. The numerical value of the Fermi energy is different in different cases due to the different values of the energy band constants.Zinc oxide nanoparticles have been biosynthesized with the help of Neolamarckia cadamba leaf and fruit extracts. ZnO nanoparticles were tested for antibacterial activity before and after calcination against Gram positive (Staphylococcus aureus, Bacillus subtilis) as well as Gram negative micro-organisms (Escherichia coli, Pseudomonas aeruginosa) within the concentration range 0.625-10 mg/mL with the help of well diffusion technique. Higher antibacterial potential has been observed in ZnO nanoparticles synthesized using leaf extract in comparison with those synthesized using fruit extract. Increased antibacterial activity was observed before calcination as compared to after calcination. ZnO synthesized using leaf extract were observed to show significant antibacterial potential against E. coli, S. aureus along with P. aeruginosa before calcination as well as against E. coli after calcination. Similarly, ZnO nanoparticles synthesized using fruit extract exhibited antibacterial activity against E. coli and P. aeruginosa before calcination and against E. coli after calcination. Both the ZnO nanoparticles before and after calcination did not show any antibacterial activity against B. subtilis. Thus, ZnO nanoparticles can serve a dual purpose by its application as an antibacterial agent against susceptible micro-organisms as well as biocompatible carrier system for drug delivery applications in case of non-antibacterial properties by virtue of its inertness as well as easy disposal.Pristine TiO₂ and x% Ru/TiO₂ catalysts with different wt.% of Ru (x%= 1.5%, 2%, 2.5% and 3%) were synthesized using sol-gel and simple impregnation methods. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), High-resolution transmission electron microscope (HR-TEM), Inductively coupled plasma-optical emission spectrometry (ICP-OES) and Thermogravimetry/Differential thermal analysis (TG/DTA) were used to study the physicochemical and morphological properties. The XRD patterns of the as-prepared pristine TiO₂ catalyst showed high crystalline nature. The HR-TEM images revealed that the Ru nanoparticles (NPs) were evenly dispersed on the TiO₂ surface. The prepared catalysts were evaluated for their catalytic activity towards the liquid phase hydrogenation of ethyl levulinate under mild reaction conditions (ambient H2 pressure). Among the various catalysts, 2.5% Ru/TiO₂ catalyst showed the maximum catalytic activity of 79% ethyl levulinate (EL) conversion with 82% selectivity of γ-valerolactone (GVL). The recyclability test revealed that the most active 2.5% Ru/TiO₂ also showed the highest stability of the catalyst under optimized experimental conditions.In this work, we demonstrate controlled introduction of O-functional groups on commercial carbon nanotube fibers (CNTFs) with different nanotube morphologies obtained by dry- and wet-spinning by treatment with gaseous ozone (O₃(g)). Our test samples were (1) wet-spun fibers of smalldiameter (1-2 nm) singlewall (SW)-CNTs and (2) dry-spun fibers containing large-diameter (20 nm) multiwall (MW)-CNTs. Our results indicate that SW-CNTFs undergo oxygenation to a higher extent than MW-CNTFs due to the higher reactivity of SW-CNTs with a larger curvature strain. Oxygenation resulting from O₃ exposure was evidenced as increase in surface O atomic% (at% by X-ray photoelectron spectroscopy, XPS) and as reductions in G/D (by Raman spectroscopy) as well as electrical conductivities due to changes in nanotube graphitic structure. By XPS, we identified the emergence of various types of O-functionalities on the fiber surfaces. After long duration O3 exposure (>300 s for SW-CNTFs and >600 s for MW-CNTFs), both sp² C═O (carbonyl) and sp³ C-O moieties (ether/hydroxy) were observed on fiber surfaces. Whereas, only sp³ C-O (ether/hydroxy) components were observed after shorter exposure times. O₃ treatment led to only changes in surface chemistry, while the fiber morphology, microstructure and dimensions remained unaltered. We believe the surface chemistry controllability demonstrated here on commercial fibers spun by different methods containing nanotubes of different structures is of significance in aiding the practical application development of CNTFs.

Autoři článku: Overbybrix0064 (Mccarty Stephansen)