Bondknight1295

Z Iurium Wiki

Verze z 2. 10. 2024, 00:07, kterou vytvořil Bondknight1295 (diskuse | příspěvky) (Založena nová stránka s textem „This paper provides a longitudinal comparison and analysis of EREPs in two huge countries, implying that EREPs are a snapshot of national rules and backgro…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper provides a longitudinal comparison and analysis of EREPs in two huge countries, implying that EREPs are a snapshot of national rules and backgrounds. The findings lay a foundation for future research to examine the innovation of environmental policies, especially for those countries with massive expressway construction projects and the related environmental issues.The main objective of this work is the future prediction of the floods in India due to climate and land change. Human activity and related carbon emissions are the primary cause of land use and climate change, which has a substantial impact on extreme weather conditions, such as floods. This study presents high-resolution flood susceptibility maps of different future periods (up to 2100) using a combination of remote sensing data and GIS modelling. To quantify the future flood susceptibility various flood causative factors, Global circulation model (GCM) rainfall and land use and land cover (LULC) data are envisaged. The present flood susceptibility model has been evaluated through receiver operating characteristic (ROC) curve, where area under curve (AUC) value shows the 91.57% accuracy of this flood susceptibility model and it can be used for future flood susceptibility modelling. Based on the projected LULC, rainfall and flood susceptibility, the results of the study indicating maximum monthly rainfall will increase by approximately 40-50 mm in 2100, while the conversion of natural vegetation to agricultural and built-up land is about 0.071 million sq. km. and the severe flood event area will increase by up to 122% (0.15 million sq. km) from now on.There is a need for water reuse technologies and applications to minimize the imminent water crisis, caused by the world population growth, the reduction of freshwater resources and the increasing water pollution. Fertilizer-drawn forward osmosis (FDFO) is a promising process capable of simultaneously extracting fresh water from low-quality sources as feed water (e.g., wastewater or greywater), while diluting fertilizer solutions for direct fertigation, avoiding the demand for freshwater for irrigation. Achieving an adequate level of dilution for direct fertigation is a key element to be evaluated for the implementation of FDFO. This study assessed the performance of the forward osmosis process to dilute fertilizer solutions to be applied directly in hydroponic systems. Experiments were carried out under conditions close to osmotic equilibrium to evaluate the process performance up to the maximum dilution point. Tests were carried out with individual and blended fertilizers (i.e., (NH4)2HPO4 or DAP, and KNO3) used as draw solution (DS) and with deionized water or individual salts (NaCl, MgCl2, Na2SO4, MgSO4) in the feed solution (FS). Water fluxes and reverse salt fluxes indicated that both fertilizer DS composition and concentrations play a fundamental role in the process. Suitable nutrient concentrations to be directly applied without further dilution for N, P and K (119, 40, 264 mg.L-1 respectively) were obtained with deionized water as FS and blended DAP (0.025 M) and KNO3 (0.15 M) as DS. However, important fertilizer losses from DS to FS were observed, being the highest for NO3- (33-70% losses from DS to FS). The presence of salts in FS decreased the water fluxes and the DS dilution due to the osmotic equilibrium caused by a greater loss of nutrients from DS to FS (up to 100%), compared with tests using just deionized water as FS. This study points out the potential limitations of the FDFO process, due to the high solute fluxes and low water fluxes in conditions close to osmotic equilibrium.The ecological implications of drought have been widely discussed in recent years. Ecological drought was thus proposed as a new drought type to describe the impact of drought on ecosystems. The current study used an innovative drought index, called the standardized ecological water deficit index (SEWDI), to monitor terrestrial ecological drought in Northwestern China, which is an ecologically fragile region. Droughts and their characteristics, including drought affected area, drought severity, drought duration, drought frequency, and drought orientation, were extracted using a spatial and temporal identification method based on SEWDI at a three-month timescale. To investigate the variation in dominant factors determining vegetation health, the contributions of moisture and thermal conditions during different ecological drought events were determined using a gradient boosting regression model. Selleckchem U0126 The main results indicated that (1) the spatial and temporal identification method successfully identified the spatio-temporal patterns of ecological drought; (2) a total of 184 ecological drought events during 1982-2020 were identified, of which 56.6% occurred prior to the 21st century. Drought events in the 21st century always exhibit larger affected areas, longer durations, a higher frequency, and greater severity, and migrated westward; and (3) in all ecological drought events, vegetation health dominated by thermal conditions accounted for 42.7% and 48.2% before and during the 21st century, respectively. This illustrated that vegetation has experienced more severe thermal stress during the 21st century.In burned landscapes, the recruitment success of the tree dominant species mainly depends on plant competition mechanisms operating at fine spatial scale, that may hinder resource availability during the former years after the disturbance. Data acquisition at very high spatial resolution from unmanned aerial vehicles (UAV) have promoted new opportunities for understanding context-dependent competition processes in post-fire environments. Here, we explored the potentiality of UAV-borne data for assessing inter-specific competition effects of understory woody vegetation on pine saplings, as well as intra-specific interactions of neighboring saplings, across three burned landscapes located along a climatic/productivity gradient in the Iberian Peninsula. Geographic object-based image analysis (GEOBIA), including multiresolution segmentation and support vector machine (SVM) classification, was used to map pine saplings and understory shrubs at species level. Input data were, on the one hand, multispectral (11.31 c growth on pine saplings across the study sites. The strongest competitive effects of seeder shrubs occurred in open areas with low vegetation cover and fuel continuity, following a gap-dependent model. The non-linear relationships evidenced in this study between the structure of neighboring shrubs and the growth of pine seedlings/saplings have profound implications for considering possible competing thresholds in post-fire decision-making processes. These results endorse the use of UAV multispectral and SfM photogrammetry as a valuable post-fire management tool for measuring accurately the effect of competition in heterogeneous burned landscapes.In recent years, assessment of sediment contamination by heavy metals, i.e., arsenic, has attracted the interest of scientists worldwide. The present study provides a new methodology to better understand the factors influencing surface water vulnerability to arsenic pollution by two advanced machine learning algorithms including boosted regression trees (BRT) and random forest (RF). Based on the sediment quality guidelines (Effects range low) polluted and non-polluted arsenic sediment samples were defined with concentrations >8 ppm and less then 8 ppm, respectively. Different conditioning factors such as topographical, lithology, erosion, hydrological, and anthropogenic factors were acquired to model surface waters' vulnerability to arsenic. We trained and validated the models using 70 and 30% of both polluted and non-polluted samples, respectively, and generated surface vulnerability maps. To verify the maps to arsenic pollution, the receiver operating characteristics (ROC) curve was implemented. The results approved the acceptable performance of the RF and BRT algorithms with an area under ROC values of 85% and 75.6%, respectively. Further, the findings showed higher importance of precipitation, slope aspect, distance from residential areas, and slope length in arsenic pollution in the modeling process. Erosion, lithology, and land use maps were introduced as the least important factors. The introduced methodology can be used to define the most vulnerable areas to arsenic pollution in advance and implement proper remediation actions to reduce the damages.The adsorption/desorption behaviors of semi-volatile organic compounds (SVOCs 1,2,3,4-tetrachlorobenzene (TCB) and phenol) in vapor phase by activated carbon (AC) were investigated by the experiments and density functional theory calculation. Investigations showed that at 100-160 °C, the adsorption capacities of TCB and phenol on AC were in the range of 176.6-342.0 mg/g and 24.0-66.4 mg/g, respectively. Increasing the temperature inhibited the SVOCs adsorption. TCB tended to be adsorbed on AC surface by monolayer, whereas the phenol was multilayer adsorption. The stronger interaction between SVOCs and active sites resulted in a higher desorption temperature (TCB 255-689 °C; phenol 200-369 °C). The SVOCs adsorption on AC was fitted well by the pseudo-first-order kinetic model, their lower concentration and larger molecular structure influenced the AC external mass transfer and intraparticle diffusion. TCB and phenol were adsorbed on graphite layer by a parallel manner, their highest adsorption energies were -75.59 kJ/mol and -55.00 kJ/mol, respectively. Oxygen-containing groups altered the charge distribution of the atoms at the edge of the graphite layer, which improved the SVOCs adsorption through enhancement of electrostatic interactions and formation of hydrogen bonds. The carboxyl and lactone groups played a critical role in improving the TCB adsorption capacity, while the carboxyl was important for phenol adsorption.The invasion of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) or "bigheaded carps" has caused extensive ecological and economic harm throughout the Mississippi River and its tributaries. To prevent their continued spread upstream toward the Great Lakes, intense commercial harvest was implemented on the Illinois River, a large tributary that connects the Mississippi River to Lake Michigan. Since implementation, harvest has reduced densities at the invasion front while also presenting an opportunity to generate a synthesis on ecosystem resilience in the face of accelerating invasion. Resilience, the ability of an ecosystem to recover after perturbation, was observed at local scales and within some taxa but has yet to manifest at a river-wide scale and often co-varied with abiotic environmental or seasonal factors. Thus, while intensive harvest has limited further spread of bigheaded carps, and evidence of additional secondary ecosystem benefits exists, opportunities remain to identify potential pathways that could spread such ecosystem benefits even farther.Simazine is a triazine pesticides that typically detected in ground water and soil, and can reportedly affect reproductive health in humans and animals. However, the effect of simazine on female germ cell development remains unclear. In the present study, we observed that simazine exposure decreased oocyte maturation competence and embryonic developmental capacity. Importantly, simazine exposure disrupted microtubule stability and actin polymerization, resulting in failure of spindle assembly and migration. In addition, simazine exposure impaired mitochondrial function and cytosolic Ca2+ homeostasis in both oocyte and 2-cell embryos, thus increasing the levels of reactive oxygen species (ROS). Moreover, simazine exposure induced DNA damage and early apoptosis during oocyte maturation. Collectively, our results demonstrate that simazine exposure-induced mitochondrial dysfunction and apoptosis are major causes of poor oocytes quality.

Autoři článku: Bondknight1295 (Paaske McFadden)