Montoyamccarty7398
the one-item FOCP-VAS. Implementing this easy to use one-item screening tool in midwifery care is suggested.The hippocampus is a key limbic region involved in higher-order cognitive processes including learning and memory. Although both typical and atypical functional connectivity patterns of the hippocampus have been well-studied in adults, the developmental trajectory of hippocampal connectivity during infancy and how it relates to later working memory performance remains to be elucidated. Here we used resting state fMRI (rsfMRI) during natural sleep to examine the longitudinal development of hippocampal functional connectivity using a large cohort (N = 202) of infants at 3 weeks (neonate), 1 year, and 2 years of age. Next, we used multivariate modeling to investigate the relationship between both cross-sectional and longitudinal growth in hippocampal connectivity and 4-year working memory outcome. Results showed robust local functional connectivity of the hippocampus in neonates with nearby limbic and subcortical regions, with dramatic maturation and increasing connectivity with key default mode network (DMN) regions resulting in adult-like topology of the hippocampal functional connectivity by the end of the first year. This pattern was stabilized and further consolidated by 2 years of age. Importantly, cross-sectional and longitudinal measures of hippocampal connectivity in the first year predicted subsequent behavioral measures of working memory at 4 years of age. Taken together, our findings provide insight into the development of hippocampal functional circuits underlying working memory during this early critical period.Non-invasive brain stimulation (NIBS) techniques are widely used in research settings to investigate brain mechanisms and increasingly being used for treatment purposes. The aim of this study was to systematically identify and review the current literature on NIBS studies of limb praxis and apraxia in healthy subjects and stroke patients with a scoping review using PRISMA-ScR guidelines. MEDLINE-PubMed, EMBASE and PsycINFO were searched. Inclusion criteria were English peer-reviewed studies focusing on the investigation of limb praxis/apraxia using repetitive transcranial magnetic stimulation (rTMS), or transcranial direct current stimulation (tDCS). Fourteen out of 139 records met the inclusion criteria, including thirteen studies with healthy subjects and one with stroke patients. The results of our systematic review suggest that in healthy subjects NIBS over left inferior parietal lobe (IPL) mainly interfered with gesture processing, by either affecting reaction times in judgment tasks or real gesturing. First promising results suggest that inhibitory continuous theta burst stimulation (cTBS) over right IPL may enhance gesturing in healthy subjects, explained by transcallosal facilitation of left IPL. In stroke patients, excitatory anodal tDCS over left IPL may improve limb apraxia. Entospletinib However, larger well powered and sham-controlled clinical trials are needed to expand on these proof-of-concept results, before NIBS could be a treatment option to improve limb apraxia in stroke patients.Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.Fifteen triterpenoid saponins including five new compounds (Mannioside B 3β-[(β-d-glucopyranosyl)oxy]urs-12-en-28-oic acid α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (1), mannioside C 3β-[(β-d-glucopyranosyl)23-dioxy]urs-12-en-28-oic acid α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (2), mannioside D 3β,23-dihydroxyurs-12-en-28-oic acid β-d-glucopyranosyl-(1 → 6)- β-d-glucopyranosyl ester (3), mannioside E 3β-hydroxy-23-oxolup-20(29)-en-28-oic acid α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl ester (4) and mannioside F (22S)-27β-[(β-d-glucopyranosyl)oxy]-22-hydroxyprotosta-12,24-dien-3β-yl β-d-glucopyranoside (5)) were isolated from the leaves of Schefflera mannii (Hook.f.) Harms. Their structures were established on the basis of 1D and 2D NMR data, mass spectrometry and chemical methods. The major isolated compounds were tested for their antiproliferative activity on human malignant epithelial (HeLa) cells but were not efficient at the concentration of 33 mM.
Lead (Pb) is considered an endocrine-disrupting chemical. However, few studies have investigated the effects of low-level Pb exposure on plasma glucose levels. Herein, we aimed to investigate whether low-level Pb exposure causes elevated plasma glucose levels and the possible mechanisms involved.
We conducted a cross-sectional study of 5747 participants from 16 sites in China. The participants underwent measurements of anthropometric factors, blood lead level (BLL) and fasting plasma glucose (FPG). Wistar rats were exposed to 0.05% Pb through drinking water or fed with a high-fat diet (HFD) for 28 weeks. The relevant parameters of glucose homeostasis, hepatic glucose production (HGP) and gene expression levels of hepatic gluconeogenesis enzymes, including phosphoenolpyruvate carboxy kinase (PEPCK), glucose-6-phosphatase (G6PC) and fructose-1,6-bisphosphatase (FBP1), were measured. In addition, gene expression levels of gluconeogenesis enzymes were also measured in HepG2 cells administered with different concentrations of lead acetate for 24h.