Rosenthalhan3526

Z Iurium Wiki

Verze z 1. 10. 2024, 23:17, kterou vytvořil Rosenthalhan3526 (diskuse | příspěvky) (Založena nová stránka s textem „Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.Aberrant regulation of epigenetic mechanisms, including the two most common types; DNA methylation and histone modification have been implicated in common chronic progressive conditions, including Alzheimer disease, cardiovascular disease, and age-related macular degeneration (AMD). All these conditions are complex, meaning that environmental factors, genetic factors, and their interactions play a role in disease pathophysiology. Although genome wide association studies (GWAS), and studies on twins demonstrate the genetic/hereditary component to these complex diseases, including AMD, this contribution is much less than 100%. Moreover, the contribution of the hereditary component decreases in the advanced, later onset forms of these chronic diseases including AMD. This underscores the need to elucidate how the genetic and environmental factors function to exert their influence on disease pathophysiology. By teasing out epigenetic mechanisms and how they exert their influence on AMD, therapeutic targets can be tailored to prevent and/or slow down disease progression. Epigenetic studies that incorporate well-characterized patient tissue samples (including affected tissues and peripheral blood), similar to those relevant to gene expression studies, along with genetic and epidemiological information, can be the first step in developing appropriate functional assays to validate findings and identify potential therapies.Age-related macular degeneration (AMD) is a major cause of blindness in older individuals worldwide. The disease is characterized by deposition of drusen between the retinal pigment epithelium (RPE) and Bruch's membrane, RPE atrophy and death of photoreceptors. AMD is a complex disease with multiple genetic and non-genetic risk factors. Genome-wide association studies (GWAS) have identified 52 variants at 34 genetic loci associated with AMD. A majority of the AMD-GWAS variants are present in non-coding region of the genome and could quantitatively impact distinct human traits [called quantitative trait loci (QTLs)] by affecting regulation of gene expression. The integration of different regulatory features, such as open-chromatin regions, histone marks, transcription factor binding sites, with AMD-GWAS can provide meaningful insights into variant's function. However, functional interpretation of variant-gene relationship in AMD is challenging because of inadequate understanding of cell-type specific and context-dependent information in disease-relevant tissues. Here we focus on the role of sequencing-based omic studies in assigning biological meaning to disease-associated variants and genes. We also discuss the methods and model systems that can be utilized to unravel molecular mechanisms of a complex disorder like AMD.Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disease, which is a leading cause of vision loss among the elderly in the developed countries. As one of the most successful examples of genome-wide association study (GWAS), a large number of genetic studies have been conducted to explore the genetic basis for AMD and its progression, of which over 30 loci were identified and confirmed. In this chapter, we review the recent development and findings of GWAS for AMD risk and progression. Then, we present emerging methods and models for predicting AMD development or its progression using large-scale genetic data. Finally, we discuss a set of novel statistical and analytical methods that were recently developed to tackle the challenges such as analyzing bilateral correlated eye-level outcomes that are subject to censoring with high-dimensional genetic data. Future directions for analytical studies of AMD genetics are also proposed.Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of "response to injury," which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late "wet" AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the iC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.Age-related macular degeneration (AMD) is a progressive neuro-retinal disease and the leading cause of central vision loss among elderly individuals in the developed countries. Modern ocular imaging technologies constitute an essential component of the evaluation of these patients and have contributed extensively to our understanding of the disease. A challenge with any review of ocular imaging technologies is the rapid pace of progress and evolution of these instruments. selleck kinase inhibitor Nonetheless, for proper and optimal use of these technologies, it is essential for the user to understand the technical principles underlying the imaging modality and their role in assessing the disease in various settings. Indeed, AMD, like many other retinal diseases, benefits from a multimodal imaging approach to optimally characterize the disease. In this chapter, we will review the various imaging technologies currently used in the assessment and management of AMD.

Autoři článku: Rosenthalhan3526 (Lassen Allen)