Ibsenniebuhr5287
Based on the nanofilm, a fluorescent sensor with a wide response range (4.4 ppt-4400 ppm) for real-time and online detection of formic acid vapor was built. With the sensor, a trace amount (0.01%) of formic acid in petroleum ether (60-90 °C) can be detected within 3 s. Besides, fluorescence quenching of the nanofilm by formic acid vapor can be visualized. It is believed that the sensor based on the nanofilm would find real-life applications in corrosion and injury prevention from formic acid.Ketamine is an anesthetic, analgesic, and antidepressant whose secondary metabolite (2R,6R)-hydroxynorketamine (HNK) has N-methyl-d-aspartate-receptor-independent antidepressant activity in a rodent model. In humans, naltrexone attenuates its antidepressant effect, consistent with opioid pathway involvement. No detailed biophysical description is available of opioid receptor binding of ketamine or its metabolites. Using molecular dynamics simulations with free energy perturbation, we characterize the binding site and affinities of ketamine and metabolites in μ and κ opioid receptors, finding a profound effect of the protonation state. G-protein recruitment assays show that HNK is an inverse agonist, attenuated by naltrexone, in these receptors with IC50 values congruous with our simulations. Overall, our findings are consistent with opioid pathway involvement in ketamine function.The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing. The amplification of the non-DNA nanomaterial gives this method considerable stability, significantly lowers the limit of detection (LOD), and enhances the anti-interference performance for complicated samples. LB100 As a result, the ultrasensitive detection of MUC1 could be achieved in the range of 0.0005-0.5 pg/mL, with an LOD of 0.1 fg/mL. Moreover, we further tested MUC1 as a biomarker for the clinical diagnosis of breast cancer CTCs under double-blind conditions on the basis of this strategy, and MCF-7 cells could be accurately detected in the range from 5 to 2000 cells/mL, with an LOD of 2 cells/mL within 6 h. The detection results of the 19 clinical samples were highly consistent with those of the clinical pathological sections, nuclear magnetic resonance imaging, and color ultrasound. These results demonstrate the validity and reliability of our method and further proved the feasibility of MUC1 as a clinical diagnostic biomarker for CTCs.Capacitive deionization (CDI) is a promising cost-effective and low energy consumption technology for water desalination. However, most of the previous works focus on only one side of the CDI system, i.e., Na+ ion capture, while the other side that stores chloride ions, which is equally important, receives very little attention. This is attributed to the limited Cl- storage materials as well as their sluggish kinetics and poor stability. In this article, we demonstrate that a N-doped porous carbon framework is capable of suppressing the phase-transformation-induced performance decay of bismuth, affording an excellent Cl- storage and showing potential for water desalination. The obtained Bi-carbon composite (Bi/N-PC) shows a capacity of up to 410.4 mAh g-1 at 250 mA g-1 and a high rate performance. As a demonstration for water desalination, a superior desalination capacity of 113.4 mg g-1 is achieved at 100 mA g-1 with excellent durability. Impressively, the CDI system exhibits fast ion capturing with a desalination rate as high as 0.392 mg g-1 s-1, outperforming most of the recently reported Cl- capturing electrodes. This strategy is applicable to other Cl- storage materials for next-generation capacitive deionization.Hydrogen generated by electrochemical water splitting is an attractive alternative to fossil fuels. Herein, we developed hollow-like Co2N nanoarrays that serve as electrocatalysts for the hydrogen evolution reaction (HER) with surface engineering by argon plasma. The argon plasma-engraved Co2N nanoarrays (Ar-Co2N/CC) represent a dramatic catalytic performance for the HER with an overpotential of 34 mV at a current density of 10 mA cm-2 in an alkaline electrolyte, as well as outstanding durability of 240 h. Characterization experiments and density functional theory (DFT) calculations suggest that the enhanced HER activity is due to the rational coordination environment of Co, which can be tuned by Ar plasma engraving. Based on our research, one new view for conducting exceptional catalyst surface modification engineering via plasma engraving might be established.Obtaining a comprehensive understanding of the energy storage mechanisms, interface compatibility, electrode-electrolyte coupling, and synergistic effects in carefully programmed nanoarchitectural electrodes and complicated electrolyte systems will provide a shortcut for designing better supercapacitors. Here, we report the intrinsic relationships between the electrochemical performances and microstructures or composition of complex nanoarchitectures and formulated electrolytes. We observed that isolated TiNb2O7 nanoparticles provided both a Faradaic intercalation contribution and a surface pseudocapacitance. The holey graphenes partitioned by nanoparticles not only fostered the fast transport of both electrons and ions but also provided additional electrical double-layer capacitance. The charge contributions from the diffusion-controlled intercalation process and capacitive behaviors, double-layer charging, and pseudocapacitance, were quantitatively distinguished in different electrolytes including a formulated ionic-liquid mixture, various nanocomposite ionogel electrolytes, and an organic LiPF6 electrolyte. A steered molecular dynamics simulation method was used to unveil the underlying principles governing the high-rate capability of holey nanoarchitectures. High energy density and high rate capability in solid-state supercapacitors were achieved using the Faradaic contributions from the lithium-ion insertion process and its surface charge-transfer process in combination with the non-Faradaic contribution from the double-layer effects. The work suggests that practical high-voltage supercapacitors with programmed performances and high safety can be realized via the efficient coupling between emerging nanoarchitectural electrodes and formulated high-voltage electrolytes.The reactions of sodium amidoborane (NaNH2BH3) with NiBr2 have been investigated, and the results showed that black precipitate 1 including the NiBNHx composites could be obtained. From the aqueous solution of the precipitate 1, the hydrolysis product Ni-B (2) was isolated and characterized. Both the in situ formed precipitate 1 and the hydrolysis product 2 can catalyze the formation of Na[BH3(NH2BH2)2H]. CoCl2 showed comparable performance with NiBr2. Based on these results, a facile method for the synthesis of Na[BH3(NH2BH2)2H] has been developed. This work provides insights into studying experimental methods for the synthesis of long B/N chain complexes and developing boron and nitrogen chemistry.Supramolecular drug self-delivery systems (SDSDSs) involving active drugs as building blocks linked by supramolecular interactions have been well defined as an advanced chemotherapy strategy. However, the lack of detecting release of drugs from SDSDSs at specific tumor sites inevitably leads to unsatisfactory therapeutic effects, owing to the lack of information regarding the administration of these drugs. In this work, predesigned platinum-containing supramolecular drug self-delivery nanomicelles (SDSDNMs) were employed to synchronously realize drug monitoring by computed tomography imaging, immediately reflecting the evolution of drug release and real-time treatment at the tumor site. The appropriate administration dosage (1.2 mg mL-1,100 μL) and the injection interval (once every 3 days) needed to guide the antitumor activity of SDSDNMs were then defined, thereby attaining the aim of efficient synergistic combination chemotherapy. In vivo tumor inhibition and histological analyses showed that SDSDNMs exhibited a strong tumor inhibition effect and good safety with respect to normal organs. Such a supramolecular drug self-delivery strategy with monitored functions may offer new potential opportunities for application in the field of synergistic combination chemotherapy.NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.Twin domains are often found as structural defects in symmetry mismatched epitaxial thin films. The delafossite ABO2, which has a rhombohedral structure, is a good example that often forms twin domains. Although bulk metallic delafossites are known to be the most conducting oxides, high conductivity is yet to be realized in thin film forms. Suppressed conductivity found in thin films is mainly caused by the formation of twin domains, and their boundaries can be a source of scattering centers for charge carriers. To overcome this challenge, the underlying mechanism for their formation must be understood so that such defects can be controlled and eliminated. Here, we report the origin of structural twins formed in a CuCrO2 delafossite thin film on a substrate with hexagonal or triangular symmetries. A robust heteroepitaxial relationship is found for the delafossite film with the substrate, and the surface termination turns out to be critical to determine and control the domain structure of epitaxial delafossites. Based on such discoveries, we also demonstrate twin-free epitaxial thin films grown on high-miscut substrates. This finding provides an important synthesis strategy for growing single-domain delafossite thin films and can be applied to other delafossites for the epitaxial synthesis of high-quality thin films.Flexible and environmentally friendly phase-change materials (PCMs) with appropriate phase transition temperatures display great potential in the regulation of environmental temperature. Here, we synthesized a series of room-temperature-use phase-change organohydrogels (PCOHs) comprising phase-change hydrated salts (disodium phosphate dodecahydrate, DPDH) and polyacrylamide (PAM) glycerol hydrogels through a facile photoinitiated one-step in situ polymerization procedure. Incorporating the environmentally friendly cost-effective DPDH hydrated salts PCMs into antidrying three-dimensional (3D) networks of the PAM organohydrogel can overcome the solid rigidity and melting leakage to achieve flexibility for wearable temperature management devices. The microstructures and physical interactions among the components of the PCOHs were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD), which demonstrate that the DPDH were uniformly loaded in the networks of the PAM.