Kaasbynum7657

Z Iurium Wiki

Verze z 1. 10. 2024, 22:51, kterou vytvořil Kaasbynum7657 (diskuse | příspěvky) (Založena nová stránka s textem „The rate-limiting step of the ORR on the catalyst surface is the occurrence of 2e- reactions to generate Li2O2, while that of the OER pathway is the oxidat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The rate-limiting step of the ORR on the catalyst surface is the occurrence of 2e- reactions to generate Li2O2, while that of the OER pathway is the oxidation of Li2O2. This work broadens the field of vision for the design of single-site high-efficiency catalysts with maximum atomic utilization efficiency for LOBs.An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. #link# The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.Mn11Ta4O21 is presented as the first hexagonal A-site manganite. Based on simple rules, the structure is compatible with a 14H-layer (cchchch)2 stacking sequence that is related to BaVO3 and BaCrO3 high-pressure polymorphs. The A-site overstoichiometry is explained through difference in ionic radii sizes between Ba and Mn. Magnetic properties show two transitions at TN1 = 88 K and TN2 = 56 K. Neutron powder diffraction evidence two magnetic structures with purely antiferromagnetic and ferrimagnetic orders below TN1 and TN2, respectively. A complementary description with 14H-(hhccccc)2 sequence of only Mn octahedra provides a direct comparison with BaMnO3-δ hexagonal perovskites and naturally explains the AFM order. Below TN2 a magneto-elastic coupling along with uniaxial negative thermal expansion are observed.Neutral loss of water and ammonia are often significant fragmentation channels upon collisional activation of protonated peptides. Here, we deploy infrared ion spectroscopy to investigate the dehydration reactions of protonated AlaSer, AlaThr, GlySer, GlyThr, PheSer, PheThr, ProSer, ProThr, AsnSer, and AsnThr, focusing on the question of the structure of the resulting [M + H - H2O]+ fragment ion and the site from which H2O is expelled. In all cases, the second residue of the selected peptides contains a hydroxyl moiety, so that H2O loss can potentially occur from this side-chain, as an alternative to loss from the C-terminal free acid of the dipeptide. Infrared action spectra of the product ions along with quantum-chemical calculations unambiguously show that dehydration consistently produces fragment ions containing an oxazoline moiety. This contrasts with the common oxazolone structure that would result from dehydration at the C-terminus analogous to the common b/y dissociation forming regular b2-type sequence ions. The oxazoline product structure suggests a reaction mechanism involving water loss from the Ser/Thr side-chain with concomitant nucleophilic attack of the amide carbonyl oxygen at its β-carbon, forming an oxazoline ring. However, an extensive quantum-chemical investigation comparing the potential energy surfaces for three entirely different dehydration reaction pathways indicates that it is actually the backbone amide oxygen atom that leaves as the water molecule.Charge transport in deoxyribonucleic acid (DNA) is of immense interest in biology and molecular electronics. Electronic coupling between the DNA bases is an important parameter describing the efficiency of charge transport in DNA. A reasonable estimation of this electronic coupling requires many expensive first principle calculations. link2 In this article, we present a machine learning (ML) based model to calculate the electronic coupling between the guanine bases of the DNA (in the same strand) of any length, thus avoiding expensive first-principle calculations. link3 The electronic coupling between the bases are evaluated using density functional theory (DFT) calculations with the morphologies derived from fully atomistic molecular dynamics (MD) simulations. A new and simple protocol based on the coarse-grained model of the DNA has been used to extract the feature vectors for the DNA bases. A deep neural network (NN) is trained with the feature vector as input and the DFT-calculated electronic coupling as output. Once well trained, the NN can predict the DFT-calculated electronic coupling of new structures with a mean absolute error (MAE) of 0.02 eV.The chemical looping process is promising for CO2 conversion because of the much higher CO2 conversion efficiency than the photocatalytic and electrocatalytic processes. Conventional oxygen carriers have to include a high content of inert support, typically Al2O3, to avoid sintering, thus leading to a trade-off between reactivity and stability. Here, we propose the use of ion-conductive Gd x Ce2-xO2-δ (GDC) to prepare the supported oxygen carriers. The resulting Fe2O3/GDC materials achieve both high reactivity and stability. Fe2O3/Gd0.3Ce1.7O2-δ shows high CO productivity (∼10.79 mmol·g-1) and CO production rate (∼0.77 mmol·g-1·min-1), which are twofold higher than that of Fe2O3/Al2O3. The performance remains stable even after 30 cycles. The mechanism study confirmed the rate-limiting role of the oxygen-ion conductivity, and the GDC support enhanced the oxygen-ion conductivity of oxygen carriers during the redox reactions, thus leading to improved CO2 splitting performance. A roughly linear relationship between the oxygen-ion conductivity and CO2 yield is also obtained and verified in our testing conditions. This relation can be used to predict and select oxygen carriers with high CO2 splitting performance.Actinide chemistry appears to be a challenge for both experimentalists and theoreticians. Radioactivity and computational obstacles lead to a lack of heterogeneous data describing actinide compounds. Here we present a description of the first database devoted to ab initio actinide calculations. The database contains information about the structures and electronic properties of 87 actinide and 17 other compounds in the gas phase and is ready-to-use for benchmarking computational and experimental results or building new semiempirical models.Isocyanic acid (HNCO) is a potentially toxic atmospheric pollutant, whose atmospheric concentrations are hypothesized to be linked to adverse health effects. ML 210 research buy estimated that concentrations of isocyanic acid in China are highest around the world. However, measurements of isocyanic acid in ambient air have not been available in China. Two field campaigns were conducted to measure isocyanic acid in ambient air using a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) in two different environments in China. The ranges of mixing ratios of isocyanic acid are from below the detection limit (18 pptv) to 2.8 ppbv (5 min average) with the average value of 0.46 ppbv at an urban site of Guangzhou in the Pearl River Delta (PRD) region in fall and from 0.02 to 2.2 ppbv with the average value of 0.37 ppbv at a rural site in the North China Plain (NCP) during wintertime, respectively. These concentrations are significantly higher than previous measurements in North America. The diurnal variations of isocyanic acid are very similar to secondary pollutants (e.g., ozone, formic acid, and nitric acid) in PRD, indicating that isocyanic acid is mainly produced by secondary formation. Both primary emissions and secondary formation account for isocyanic acid in the NCP. The lifetime of isocyanic acid in a lower atmosphere was estimated to be less than 1 day due to the high apparent loss rate caused by deposition at night in PRD. Based on the steady state analysis of isocyanic acid during the daytime, we show that amides are unlikely enough to explain the formation of isocyanic acid in Guangzhou, calling for additional precursors for isocyanic acid. Our measurements of isocyanic acid in two environments of China provide important constraints on the concentrations, sources, and sinks of this pollutant in the atmosphere.Artificial aquaporins are synthetic molecules that mimic the structure and function of natural aquaporins (AQPs) in cell membranes. The development of artificial aquaporins would provide an alternative strategy for treatment of AQP-related diseases. In this report, an artificial aquaporin has been constructed from an amino-terminated tubular molecule, which operates in a unimolecular mechanism. The artificial channel can work in cell membranes with high water permeability and selectivity rivaling those of AQPs. Importantly, the channel can restore wound healing of the cells that contain function-lost AQPs.Doxorubicin (DOX) is a widely used classical broad-spectrum anticancer drug. The major mechanism of DOX-mediated anticancer activity at clinically relevant concentrations is believed to be via DNA double-strand breaks due to topoisomerase IIα. However, other mechanisms by which DOX causes cytotoxicity have been proposed, including formaldehyde-dependent virtual interstrand cross-linking (ICL) formation. In this study, a method was established whereby cytotoxicity caused by virtual ICL derived from DOX is turned on and off using a cell culture system. Using this strategy, DOX-mediated cytotoxicity in Fanconi anemia group gene (FANC)/breast cancer susceptibility gene (BRCA)-deficient cells increased up to 70-fold compared to that in cells proficient in DNA repair pathways by increasing intracellular formaldehyde (FA) concentration. This approach also demonstrated that cytotoxicity introduced by DOX-mediated FA-dependent virtual ICL is completely independent of the toxicity induced by topoisomerase II inhibition at the cellular level. The potential of dual-targeting by DOX treatment was verified using an acid-specific FA donor. Overall, anticancer therapy targeting tumors deficient in the FANC/BRCA pathway may be possible by minimizing DOX-induced toxicity in normal cells.A series of quaternary and quinary Zintl phase thermoelectric (TE) compounds, Ca5-xYb x Al2-yIn y Sb6 (3.07(1) ≤ x ≤ 4.88(2); 0.16(2) ≤ y ≤ 2.00), containing Al/In mixed sites as well as Ca/Yb mixed sites has been successfully synthesized by a direct arc-melting method, and the X-ray diffraction analyses indicated that the products initially adopted an orthorhombic Ba5Al2Bi6-type structure (space group Pbam, Z = 2). However, after a postannealing process at 973 K for 1 month, the particular Yb rich compounds underwent a transformation of the original structure type to a Ca5Ga2Sb6-type phase regardless of the In substitution for Al. The noticeable site preference of cationic Ca and Yb in the three available cationic sites could be understood on the basis of a size match between the central cation and the volume of the anionic polyhedra. The observed phase transition was nicely explained by DFT calculations, proving that the Ca5Ga2Sb6-type phase was energetically more favorable than the Ba5Al2Sb6-type phase for the particular Yb-rich compound.

Autoři článku: Kaasbynum7657 (Duncan Cruz)