Clemmensennapier3088

Z Iurium Wiki

Verze z 1. 10. 2024, 22:19, kterou vytvořil Clemmensennapier3088 (diskuse | příspěvky) (Založena nová stránka s textem „An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chwith genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than d) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.To determine the role of ICP22 in transcription, we performed precise nuclear run-on followed by deep sequencing (PRO-seq) and global nuclear run-on with sequencing (GRO-seq) in cells infected with a viral mutant lacking the entire ICP22-encoding α22 (US1/US1.5) gene and a virus derived from this mutant bearing a restored α22 gene. At 3 h postinfection (hpi), the lack of ICP22 reduced RNA polymerase (Pol) promoter proximal pausing (PPP) on the immediate early α4, α0, and α27 genes. Diminished PPP at these sites accompanied increased Pol processivity across the entire herpes simplex virus 1 (HSV-1) genome in GRO-seq assays, resulting in substantial increases in antisense and intergenic transcription. The diminished PPP on α gene promoters at 3 hpi was distinguishable from effects caused by treatment with a viral DNA polymerase inhibitor at this time. The ICP22 mutant had multiple defects at 6 hpi, including lower viral DNA replication, reduced Pol activity on viral genes, and increased Pol activity on cellularriptional initiation, elongation, and termination complexes. Such limiting functions are likely to be important in herpesvirus genomes that are otherwise highly transcriptionally active and compact, comprising mostly short, intronless genes near neighboring genes of opposite sense and containing numerous 3'-nested sets of genes that share transcriptional termination signals but differ at transcriptional start sites on the same template strand.Although HIV-specific CD8 T cells are effective in controlling HIV infection, they fail to clear infection even in the presence of antiretroviral therapy (ART) and cure strategies such as "shock-and-kill." Little is known how ART is contributing to HIV-specific CD8 T cell function and the ability to clear HIV infection. Therefore, we first assessed the cytokine polyfunctionality and proliferation of CD8 T cells from ART-treated HIV+ individuals directly ex vivo and observed a decline in the multifunctional response as well as proliferation indices of these cells in individuals treated with integrase inhibitor (INSTI) based ART regimens compared to both protease inhibitor (PI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) based regimens. We next cocultured CD8 T cells with different drugs individually and were able to observe reduced functional properties with significantly decreased ability of CD8 T cells to express IFN-γ, MIP1β and TNF-α only after treatment with INSTI-based regimens. Furthermoreve individuals. Here, we demonstrate that the choice of ART can have a significant impact on function and metabolism of CD8 T cells. In summary, our study provides first evidence on a significant, negative impact on CD8 T cell effector functions in the presence of two INSTIs, dolutegravir and elvitegravir, which may contribute to the limited success of eradicating HIV-infected cells through "shock-and-kill" strategies. Although our findings are coherent with recent studies highlighting a possible role of dolutegravir in weight gain, further investigations are necessary to fully understand the impact of INSTI-based regimens on the health of the individual during antiretroviral therapy.Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. learn more Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.Papillomaviruses exclusively infect stratified epithelial tissues and cause chronic infections. To achieve this, infected cells must remain in the epithelial basal layer alongside their uninfected neighbors for years or even decades. To examine how papillomaviruses achieve this, we used the in vivo MmuPV1 (Mus musculus papillomavirus 1) model of lesion formation and persistence. During early lesion formation, an increased cell density in the basal layer, as well as a delay in the infected cells' commitment to differentiation, was apparent in cells expressing MmuPV1 E6/E7 RNA. Using cell culture models, keratinocytes exogenously expressing MmuPV1 E6, but not E7, recapitulated this delay in differentiation postconfluence and also grew to a significantly higher density. Cell competition assays further showed that MmuPV1 E6 expression led to a preferential persistence of the cell in the first layer, with control cells accumulating almost exclusively in the second layer. Interestingly, the disruption of MmuPV1 E6 apillomavirus model suggest that E6 gene expression leads to the preferential persistence of epithelial cells in the lower layers during stratification. The E6 interaction with MAML1, a component of the Notch pathway, is required for this phenotype and is linked to E6 effects on cell density and differentiation. These observations are likely to reflect a common E6 role that is preserved among papillomaviruses and provide us with a novel therapeutic target for the treatment of recalcitrant lesions.The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single-cell RNA sequencing (scRNA-seq) studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We show here that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a dedifferentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1-infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell redifferentiation destabilized latent infection.

Autoři článku: Clemmensennapier3088 (Bonner McKinney)