Daleymattingly0601

Z Iurium Wiki

Verze z 1. 10. 2024, 21:54, kterou vytvořil Daleymattingly0601 (diskuse | příspěvky) (Založena nová stránka s textem „A channelized radio-frequency (RF) signal synthesis scheme is proposed to generate broadband RF signals with reconfigurable waveform, center frequency and…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

A channelized radio-frequency (RF) signal synthesis scheme is proposed to generate broadband RF signals with reconfigurable waveform, center frequency and instantaneous bandwidth. Based on dual optical frequency combs (OFCs) with different free spectrum ranges (FSRs), multiple narrowband signals are up-converted and synthesized into a broadband signal. Reconfigurable waveforms are generated in the simulation, including a symmetrical triangular linear frequency modulation continuous wave (STLFMCW) signal and a binary phase shift keying (BPSK) signal. In addition, to realize phase stability among channels, dual OFCs are differently modulated through polarization-multiplexing electro-optical modulators (EOMs). An RF signal synthesis experiment shows the relative phase fluctuation among channels is only 1.8°.We numerically studied gas high-harmonic generation in a two-color vortex laser field using the non-adiabatic Lewenstein model. Macroscopic responses were calculated by numerically solving the three-dimensional propagation equation in cylindrical coordinates. It was confirmed that unique high-harmonic signals with necklace-like shapes exhibit orbital angular momentum (OAM). The azimuthally distributed necklace harmonics exhibit periodic modulation as a function of laser frequency and topological charges of the driving field. Brepocitinib Phase investigation showed that the OAM of the necklace harmonics is attributable to the tuning of the relative intensity of the two driving pulses. These findings provide a new dimension for high-harmonic manipulation in the vortex field. The two-color vortex field is the first scheme proposed for manipulating the intensity profile of high harmonics.Nonlinear dynamics of semiconductor nanolasers subjected to distributed feedbacks from fiber Bragg grating (FBG) are investigated through modified rate equations, which include the unique Purcell cavity-enhanced spontaneous emission factor F and spontaneous emission coupling factor β. In the analysis, the effects of F, β, frequency detuning, feedback strength, feedback delay, FBG bandwidth and length on chaotic performance are evaluated. It is observed that the approach of FBG feedback outperforms mirror feedback in terms of concealing time-delay signature and increasing effective bandwidth by choosing intermediate feedback strength and frequency detuning. Additionally, chaotic regions and the corresponding chaotic characteristics are revealed by dynamical mappings of nanolasers subjected to FBG feedback. The results show that decreased F, β and increased FBG bandwidth can extend the parameter range of chaos. However, the variation of feedback delay and FBG length has no obvious effect on TDS suppression and effective bandwidth enhancement. Most importantly, high quality optical chaos with low TDS and high effective bandwidth induced by increased dispersion is obtained within broad parameter regions considered, which is beneficial to achieving chaos-based applications.In this work we demonstrate the capability to measure shear-strain and torsion loads by bonding an optical fiber to a 3D printed periodic grooved plate. The device acts as a long period grating where the resonances show loss tunability ranging from ∼0 up to ∼20 dB, achieving sensitivities values for the dip transmission ratio as function of the load of 0.12 /mε and 0.21/deg, for shear-strain and torsion loads ranging from 0-∼8 mε and 1-∼4 deg, respectively. The low wavelength drift allowed us to operate the sensor through intensity demodulation techniques, showing good tracking performance of external stimuli.Side-pumping combiner is used for pumping double-clad fiber in various fiber laser schemes. However, its coupling efficiency and temperature characteristics suffer when pumped via a large numerical aperture (NA) pump light. We investigated the method of optimizing the coupling efficiency of a (2 + 1) ×1 combiner under a large NA pump light injection. After optimization of taper ratio and length of the pump fiber and fusion area between pump and signal fiber, the coupling efficiency increased and the temperature characteristic improved, which could be useful for fabrication of a side-pumping combiner for high-power fiber laser applications.We demonstrate the high quality (Q) factor microdisk resonators in high index-contrast chalcogenide glass (ChG) film GeSbSe using electron-beam lithography followed by plasma dry etching. High confinement, low-loss, and single-point-coupled microdisk resonators with a loaded Q factor of 5×105 are measured. We also present pulley-coupled microdisk resonators for relaxing the requirements on the coupling gap. While adjusting the wrap-around coupling waveguides to be phase-matched to the resonator mode, a single specific microdisk radial mode can be excited. Moreover, the thermal characterization of microdisk resonators is carried out to estimate the thermo-optic coefficient of 6.7×10-5/K for bulk ChG.A channeled Stokes polarimeter that recovers polarimetric signatures across the scene from the modulation induced channels is preferrable for many polarimetric sensing applications. Conventional channeled systems that isolate the intended channels with low-pass filters are sensitive to channel crosstalk effects, and the filters have to be optimized based on the bandwidth profile of scene of interest before applying to each particular scenes to be measured. Here, we introduce a machine learning based channel filtering framework for channeled polarimeters. The machines are trained to predict anti-aliasing filters according to the distribution of the measured data adaptively. A conventional snapshot Stokes polarimeter is simulated to present our machine learning based channel filtering framework. Finally, we demonstrate the advantage of our filtering framework through the comparison of reconstructed polarimetric images with the conventional image reconstruction procedure.We study the transverse mode instability (TMI) in the limit where a single higher-order mode (HOM) is present. We demonstrate that when the beat length between the fundamental mode and the HOM is small compared to the length scales on which the pump amplitude and the optical mode amplitudes vary, TMI is a three-wave mixing process in which the two optical modes beat with the phase-matched component of the index of refraction that is induced by the thermal grating. This limit is the usual limit in applications, and in this limit TMI is identified as a stimulated thermal Rayleigh scattering (STRS) process. We demonstrate that a phase-matched model that is based on the three-wave mixing equations can have a large computational advantage over current coupled mode methods that must use longitudinal step sizes that are small compared to the beat length.Contrary to conventional Tamm plasmon (TP) absorbers of which narrow absorptance peaks will shift toward short wavelengths (blueshift) as the incident angle increases for both transverse magnetic (TM) and transverse electric (TE) polarizations, here we theoretically and experimentally achieve nonreciprocal absorption in a planar photonic heterostructure composed of an isotropic epsilon-near-zero (ENZ) slab and a truncated photonic crystal for TM polarization. This exotic phenomenon results from the interplay between ENZ and material loss. And the boundary condition across the ENZ interface and the confinement effect provided by the TP can enhance the absorption in the ENZ slab greatly. link2 As a result, a strong and nonreciprocal absorptance peak is observed experimentally with a maximum absorptance value of 93% in an angle range of 60∼70°. Moreover, this TP absorber shows strong angle-independence and polarization-dependence. As the characteristics above are not at a cost of extra nanopatterning, this structure is promising to offer a practical design in narrowband thermal emitter, highly sensitive biosensing, and nonreciprocal nonlinear optical devices.Radio-over-fiber (ROF) link based on phase modulation and coherent detection has been widely proposed for linear transmission. Nowadays, there are increasing demands for long-distance analog radio-frequency (RF) signal transmission, as radars and broadcast systems. In this paper, a high spurious-free-dynamic-range (SFDR) analog coherent ROF link based on optical homodyne detection and genetic-algorithm-assisted digital demodulation is proposed and experimentally investigated. The ROF link is designed for transmitting RF signals ranging from 500 kHz to 100 MHz over a long-distance fiber under the environment of wide temperature. We test the link performance by transmitting different groups of two-tone signals (580 kHz and 600 kHz, 9 MHz and 10 MHz, 49 MHz and 50 MHz, 99 MHz and 100 MHz) over a 100.8-km single-mode fiber (SMF) under the temperature varying from -40°C to 70°C, the shot-noise-limited SFDR of the link are measured to be greater than 122 dB·Hz2/3.The mode multiplexing/de-multiplexing devices are key components for mode-division multiplexing (MDM) technology. Here, we propose an ultra-compact and reconfigurable mode-conversion device via inverse design, which can selectively implement multichannel mode conversion controlled by input phase shifts (Δφ). The device can transform input TE0 (TE1) mode to TE4 (TE3) mode at Δφ=0, or from TE0 (TE1) to TE1 (TE2) at Δφ=π spanning the wavelength range of 1525-1565 nm. link3 We further demonstrate an integrated monolithic module based on the mode conversions to directly demodulate the dual-mode difference phase shift keying (DPSK) signal which significantly reduces the device size and benefits for future dense integrations in MDM systems.Optical communication wavelength is being extended from the near-infrared band of 1.31/1.55 µm to the mid-infrared band of 2 µm or beyond for satisfying the increasing demands for high-capacity long-distance data transmissions. An efficient electro-optic (EO) modulator working at 2 µm is highly desired as one of the indispensable elements for optical systems. Lithium niobate (LiNbO3) with a large second-order nonlinear coefficient is widely used in various EO modulators. Here, we experimentally demonstrate the first Mach-Zehnder EO modulator working at 2 µm based on the emerging thin-film LiNbO3 platform. The demonstrated device exhibits a voltage-length product of 3.67 V·cm and a 3-dB-bandwidth of >22 GHz which is limited by the 18 GHz response bandwidth of the photodetector available in the lab. Open eye-diagrams of the 25 Gb/s on-off keying (OOK) signals modulated by the fabricated Mach-Zehnder EO modulator is also measured experimentally with a SNR of about 14 dB.We propose and demonstrate a temperature-insensitive directional transverse load sensor based on a fiber Bragg grating (FBG) inscribed in a section of dual side-hole fiber (DSHF). The application of transverse load results in an effective change in the refractive index and, consequently, changes in the DSHF birefringence. The directional transverse load response of the fabricated DSH-FBG was studied by monitoring the wavelength separations with transverse load applied in different direction with 15° increments. The load sensitivity exhibited two maxima and two minima in a polar coordinate system, achieving a maximum value of 699 pm/(N/mm) for transverse load applied along the slow axis and a minimum value of 285 pm/(N/mm) for transverse load applied along the fast axis. Subsequently, a finite element analysis (FEA) was conducted to simulate the resulting strain distribution of the DSHF with applied directional transverse load. The temperature response of the DSH-FBG transverse load sensor was also tested, yielding a low sensitivity of 1.

Autoři článku: Daleymattingly0601 (Marshall Gorman)