Sharpeabdi6780

Z Iurium Wiki

Verze z 1. 10. 2024, 21:48, kterou vytvořil Sharpeabdi6780 (diskuse | příspěvky) (Založena nová stránka s textem „Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (C26PA2 and C48PA2). These materials combine the structuring ability of monodisperse polyethylenes with the ability of phosphonic acid groups to form strong hydrogen-bonding networks. Anhydride formation is absent so that charge carrier loss by a condensation reaction is avoided even at elevated temperatures. Below the melting temperature (Tm), both materials exhibit a crystalline polyethylene backbone and a layered morphology with planar phosphonic acid aggregates separated by 29 and 55 Å for C26PA2 and C48PA2, respectively. Above Tm, the amorphous polyethylene (PE) segments coexist with the layered aggregates. This phenomenon is especially pronounced for the C26PA2 and is identified as a thermotropic smectic liquid crystalline phase. Under these conditions, an extraordinarily high correlation length (940 Å) along the layer normal is observed, demonstrating the strength of the hydrogen bond network formed by the phosphonic acid groups. The proton conductivity in both materials in the absence of water reaches 10-4 S/cm at 150 °C. These new precise phosphonic acid-based materials illustrate the importance of controlling the chemistry to form self-assembled nanoscale aggregates that facilitate rapid proton conductivity.Genetic control over a cytoskeletal network inside lipid vesicles offers a potential route to controlled shape changes and DNA segregation in synthetic cell biology. Bacterial microtubules (bMTs) are protein filaments found in bacteria of the genus Prosthecobacter. They are formed by the tubulins BtubA and BtubB, which polymerize in the presence of GTP. Here, we show that the tubulins BtubA/B can be functionally expressed from DNA templates in a reconstituted transcription-translation system, thus providing a cytosol-like environment to study their biochemical and biophysical properties. We found that bMTs spontaneously interact with lipid membranes and display treadmilling. When compartmentalized inside liposomes, de novo synthesized BtubA/B tubulins self-organize into cytoskeletal structures of different morphologies. Moreover, bMTs can exert a pushing force on the membrane and deform liposomes, a phenomenon that can be reversed by a light-activated disassembly of the filaments. Our work establishes bMTs as a new building block in synthetic biology. selleck chemical In the context of creating a synthetic cell, bMTs could help shape the lipid compartment, establish polarity or directional transport, and assist the division machinery.Transmembrane ion fluxes have earlier been identified as a source of potential instability in solid contact ion-selective electrodes (SC-ISEs). In this work, foamlike structures were intentionally introduced into a potassium-sensitive plasticized poly(vinyl chloride) ion-selective membrane (ISM) near the membrane|solid contact interface by controlling the temperature during membrane deposition. Foamlike structures in the ISM were shown to be effective at physically tailoring the transport of ions in the ion-selective membrane, greatly reducing the flux of interfering ions from the sample to the membrane|solid contact interface. The drifts during a conventional water layer test were hence able to be greatly mitigated, even with SC-ISEs incorporating a relatively hydrophilic poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOTPSS) solid contact. In solutions with a high background concentration of interfering ions, equilibrated ion-selective electrodes with foamlike membranes were able to reproduce their initial potentials within 0.6 mV uncertainty (n = 3) from 0 to 18 h. This was achieved despite sensor exposure to solutions exceeding the selectivity limit of the ISEs in 3 h intervals, allowing improvement of the potential reproducibility of the sensors. Since the introduction of foamlike structures into ISM is linked to temperature-controlled membrane deposition, it is envisaged that the method is generally applicable to all solid contact ion-selective electrodes that are based on polymeric membranes and require membrane deposition from the cocktail solution.The instability of halide perovskites toward moisture is one of the main challenges in the field that needs to be overcome to successfully integrate these materials in commercially viable technologies. One of the most popular ways to ensure device stability is to form 2D/3D interfaces by using bulky organic molecules on top of the 3D perovskite thin film. Despite its promise, it is unclear whether this approach is able to avoid 3D bulk degradation under accelerated aging conditions, i.e., thermal stress and light soaking. In this regard, it is crucial to know whether the interface is structurally and electronically stable or not. In this work, we use the bulky phenethylammonium cation (PEA+) to form 2D layers on top of 3D single- and triple-cation halide perovskite films. The dynamical change of the 2D/3D interface is monitored under thermal stress and light soaking by in situ photoluminescence. We find that under pristine conditions the large organic cation diffuses only in 3D perovskite thin films of poor structural stability, i.e., single-cation MAPbI3. The same diffusion and a dynamical change of the crystalline structure of the 2D/3D interface are observed even on high-quality 3D films, i.e., triple-cation MAFACsPbI3, upon thermal stress at 85 °C and light soaking. Importantly, under such conditions, the resistance of the thin film to moisture is lost.Monoclonal antibodies (mAbs) and related products undergo a wide range of modifications, many of which can often be directly associated to culture conditions during upstream processing. Ideally, such conditions should be monitored and fine-tuned based on real-time or close to real-time information obtained by the assessment of the product quality attribute (PQA) profile of the biopharmaceutical produced, which is the fundamental idea of process analytical technology. Therefore, methods that are simple, quick and robust, but sufficiently powerful, to allow for the generation of a comprehensive picture of the PQA profile of the protein of interest are required. A major obstacle for the analysis of proteins directly from cultures is the presence of impurities such as cell debris, host cell DNA, proteins and small-molecule compounds, which usually requires a series of capture and polishing steps using affinity and ion-exchange chromatography before characterization can be attempted. In the current study, we demonstrate direct coupling of protein A affinity chromatography with native mass spectrometry (ProA-MS) for development of a robust method that can be used to generate information on the PQA profile of mAbs and related products in as little as 5 min. The developed method was applied to several samples ranging in complexity and stability, such as simple and more complex monoclonal antibodies, as well as cysteine-conjugated antibody-drug conjugate mimics. Moreover, the method demonstrated suitability for the analysis of protein amounts of less then 1 μg, which suggests applicability during early-stage development activities.Nickel-rich lithium metal oxide cathode materials have recently be en highlighted as next-generation cathodes for lithium-ion batteries. Nevertheless, their relatively high surface reactivity must be controlled, as fading of the cycling retention occurs rapidly in the cells. This paper proposes functionalized nickel-rich lithium metal oxide cathode materials by a multipurpose nanosized inorganic material-titanium silicon oxide-via a simple thermal treatment process. We examined the topologies of the nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathodes with scanning electron microscopy and quantitatively analyzed their improved mechanical properties using microindentation. The cell containing nickel-rich lithium metal oxide cathodes suffered from poor cycling behavior as the electrolytes persistently decomposed; however, this behavior was effectively inhibited in the cell by nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathodes. Further ex situ analyses indicated that the particle hardness of the nano-titanium silicate-functionalized nickel-rich lithium metal oxide cathode materials was maintained, and decomposition of the electrolyte by the dissolution of transition metals was thoroughly inhibited even after 100 cycles. Based on these results, we concluded that the use of nano-titanium silicate as a coating material for nickel-rich lithium metal oxide cathode materials is an effective way to enhance the cycling performance of lithium-ion batteries.Triboelectric nanogenerators (TENGs) recently have emerged as applicable and eco-friendly harvesting devices. Numerous studies have been actively conducted to fabricate a flexible and robust TENG with high-output performance. Herein, a film-sponge-coupled TENG (FS-TENG) is proposed using direct ultraviolet laser ablation, as a method for surface modification of a polyimide (PI) film. This state-of-the-art method has advantages of accuracy as well as time efficiency in creating the pattern on the surface; thus, the pre-designed patterns can be precisely constructed within only a minute. In the laser-ablated PI film, the structural design and chemical modification on the surface are investigated related to the triboelectric output performance. Thereafter, a sponge is fabricated based on non-woven polyamide and silicone rubber, which can fully contact with the micro-/nano-scaled structure on the surface of the PI film. After an optimization, the FS-TENG exhibits 48.19 V of open-circuit voltage and 1.243 μA of short-circuit current, which shows approximately 3 times enhanced electric performance compared to the FS-TENG using a pristine PI film. The FS-TENG device demonstrates its robustness through both mechanical stress and flexible stress by showing less than 5% degradation after 50,000 cycles. On the basis of the high flexibility and stability of the FS-TENG, a self-powered scoreboard is successfully developed for lighting a scoreboard in a soccer field. This feasible lighting system can be operated by harvesting the kinetic energy of a soccer player without an additional power source. The novel FS-TENG, thus, provides remarkable potential for a self-powered indoor harvesting system.Electrocatalytic nitrogen reduction reaction (NRR) is a promising method for sustainable production of NH3, which provides an alternative to the traditional Haber-Bosch process. However, the poor Faraday efficiency caused by N≡N triple bond activation and competitive hydrogen evolution reaction (HER) have seriously hindered the application of NRR. In this work, a novel strategy to promote NRR through boron-transition-metal (TM) hybrid double-atom catalysts (HDACs) has been proposed. The excellent catalytic activity of HDACs is attributed to a significant difference of valence electron distribution between boron and TMs, which could better activate N≡N bonds and promote the conversion of NH2 to NH3 compared with boron or metal single-atom catalysts and traditional double-atom catalysts (DACs). Hence, by means of DFT computations, the stability, activity, and selectivity of 29 HDACs are systematically investigated to evaluate their catalytic performance. B-Ti@g-CN and B-Ta@g-CN are screened as excellent nitrogen-fixing catalysts with particularly low limiting potentials of 0.

Autoři článku: Sharpeabdi6780 (Skipper Kragelund)