Mollerupprater9181
001). It was not associated with diabetes. Elevated coffee consumption was associated with a higher risk of dyslipidemia and a lower risk of hypertension in HBV-infected patients, two effects expected to be associated with favorable clinical outcomes. Further studies should test whether such metabolic benefits translate into reduced mortality risk in this population.Shortage in insulin secretion or degradation of produced insulin is the principal characteristic of the metabolic disorder of diabetes mellitus (DM). However, because the current medications for the treatment of DM have many detrimental side effects, it is necessary to develop more effective antidiabetic drugs with minimal side effects. Alpha-glucosidase and alpha-amylase inhibitors are directly implicated in the delay of carbohydrate digestion. Pharmacologically, these inhibitors could be targeted for the reduction in glucose absorption rate and, subsequently, decreasing the postprandial rise in plasma glucose and the risk for long-term diabetes complications. The main objectives of this research study were to isolate different phytochemical constituents present in the methanolic extract of Plectranthusecklonii and evaluate their alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity. The phytochemical investigation of the methanolic extract of P. ecklonii yielded three known compmolecular docking, and antioxidant capacities of P. ecklonii constituents.The Trx and Grx systems, two disulfide reductase systems, play critical roles in various cell activities. There are great differences between the thiol redox systems in prokaryotes and mammals. Though fluorescent probes have been widely used to detect these systems in mammalian cells. Very few methods are available to detect rapid changes in the redox systems of prokaryotes. Here we investigated whether Fast-TRFS, a disulfide-containing fluorescent probe utilized in analysis of mammalian thioredoxin reductase, could be used to detect cellular disulfide reducibility in bacteria. Fast-TRFS exhibited good substrate qualities for both bacterial thioredoxin and GSH-glutaredoxin systems in vitro, with Trx system having higher reaction rate. Moreover, the Fast-TRFS was used to detect the disulfide reductase activity in various bacteria and redox-related gene null E. coli. Some glutaredoxin-deficient bacteria had stronger fast disulfide reducibility. The Trx system was shown to be the predominant disulfide reductase for fast disulfide reduction rather than the Grx system. These results demonstrated that Fast-TRFS is a viable probe to detect thiol-dependent disulfide reductases in bacteria. It also indicated that cellular disulfide reduction could be classified into fast and slow reaction, which are predominantly catalyzed by E. coli Trx and Grx system, respectively.Ascorbic acid is a multifaceted compound that can perform both antioxidant and pro-oxidant activities in the redox reactions induced by transition metal ions, so its role in nature and especially in the human body is still the subject of debate. In the present study, we have examined the influence of ascorbic acid on lipid peroxidation in a model system that mimics the cell membrane, namely micelles of linoleic acid (LA), induced by chelate complexes of iron and copper ions with quinone-chelator 2-phenyl-4-(butylamino)-naphtholquinoline-7,12-dione (Q1). This quinone effectively generates reactive oxygen species and semiquinone radicals inside cancer cells via a cycling redox reaction. Here it was demonstrated that in the absence of quinone-chelator ascorbic acid significantly accelerates the lipid peroxidation induced by both Fe(II) and Cu(II) ions. It has been shown also that Q1 chelate complexes with Fe(II) and Cu(II) ions are redox active in the LA micelles oxidation. No effect of ascorbate was detected on the reactivity of chelate complex with Fe(II) ions. On the other hand, ascorbate performs pro-oxidant activity in Q1-Cu(II) complex induced reaction. We can conclude that ascorbate-driven redox cycling of Q1 may promote its anti-tumor activity.Carotenoids have been suggested to have either anti- or pro-oxidative effects in several cancer cells, and those effects can trigger an unbalanced reactive oxygen species (ROS) production resulting in an apoptotic response. Our study aimed to evaluate the effect of the well-known carotenoid 3, 3'-dihydroxy-β, β'-carotene-4, 4-dione (astaxanthin, AXT) on glioblastoma multiforme (GBM) cells, especially as a pretreatment of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), that was previously shown to increase ROS and to induce apoptosis in cancer cells. We found that AXT by itself did not trigger apoptosis in four investigated GBM cell lines upon a 24 h treatment at various concentrations from 2.5 to 50 µM. However, in U251-MG and T98-MG GBM cells, pretreatment of 2.5 to 10 µM AXT sensitized cells to TRAIL treatment in a statistically significant manner (p less then 0.05) while it did not affect CRT-MG and U87-MG GBM cells. We further compared AXT-sensitive U251-MG and -insensitive CRT-MG response to AXT and showed that 5 µM AXT treatment had a beneficial effect on both cell lines, as it enhanced mitochondrial potential and TRAIL treatment had the opposite effect, as it decreased mitochondrial potential. Interestingly, in U251-MG, 5 µM AXT pretreatment to TRAIL-treated cells mitochondrial potential further decreased compared to TRAIL alone cells. In addition, while 25 and 50 ng/mL TRAIL treatment increased ROS for both cell lines, pretreatment of 5 µM AXT induced a significant ROS decrease in CRT-MG (p less then 0.05) while less effective in U251-MG. We found that in U251-MG, superoxide dismutase (SOD) 2 expression and enzymatic activity were lower compared to CRT-MG and that overexpression of SOD2 in U251-MG abolished AXT sensitization to TRAIL treatment. Taken together, these results suggest that while AXT acts as an ROS scavenger in GBM cell lines, it also has some role in decreasing mitochondrial potential together with TRAIL in a pathway that can be inhibited by SOD2.There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer's disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions-cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.Phenolic compounds that estimate apple extracts with multifaceted biological effects are potentially valuable for protection against skin disorders. The purpose of our research was to formulate gels and emulgels containing a complex of phenolic compounds of apple extracts and to perform a biopharmaceutical evaluation of semi-solid pharmaceutical forms, determining their antioxidant activity in vitro. HPLC analyses of phenolic compounds were performed. The total amount of phenolic compounds found in the sample of apples from the 'Paprastasis antaninis' cultivar was 1455.5 ± 72.8 µg/g. The release of phenolics from gels and emulgels was assessed by Franz-type diffusion cells. The in vitro release test revealed that phenolic compounds were released from the gel (G1-G6) formulations (70.6-73.8%) compared to the amounts (77.2-83.9%) released from the emulgel (E1-E6) formulations. The largest amount (83.9%) of phenolic compounds was released from the E5 formulation, while the smallest amounts (70.6%) were released from the formulations G3 and G5. The antioxidant activity evaluated by the DPPH and FRAP methods observed in all gel (G1-G6) and emulgel (E1-E6) formulations after 6 h were the strongest, compared to the activities observed in the formulations after 2 or 4 h. Gels and emulgels, which are rich in apple extracts, have strong antioxidant properties and may be promising choices for the development of new, innovative pharmaceutical forms or cosmetics.Nitric oxide (NO) and abscisic acid (ABA) play a significant role to combat abiotic stress. Application of 100 µM sodium nitroprusside (SNP, NO donor) or ABA alleviated heat stress effects on photosynthesis and growth of wheat (Triticum aestivum L.) plants exposed to 40 °C for 6 h every day for 15 days. We have shown that ABA and NO synergistically interact to reduce the heat stress effects on photosynthesis and growth via reducing the content of H2O2 and thiobarbituric acid reactive substances (TBARS), as well as maximizing osmolytes production and the activity and expression of antioxidant enzymes. The inhibition of NO and ABA using c-PTIO (2-4 carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and fluridone (Flu), respectively, reduced the osmolyte and antioxidant metabolism and heat stress tolerance. The inhibition of NO significantly reduced the ABA-induced osmolytes and antioxidant metabolism, exhibiting that the function of ABA in the alleviation of heat stress was NO dependent and can be enhanced with NO supplementation.Thus, regulating the activity and expression of antioxidant enzymes together with osmolytes production could act as a possible strategy for heat tolerance.Ilex paraguariensis (yerba mate) is a plant species of the holly genus Ilex native to South America from the family Aquifoliaceae and is used for the production of yerba mate infusion. The leaves of the plant are steeped in hot water to make a beverage known as mate. The present study aimed to quantify and compare the content of selected elements in dried leaves and stems of I. paraguariensis (originating from Paraguay, Argentina, and Brazil) available in the market in Poland and determine the amount of these elements and bioactive compounds that pass into the infusion prepared from them. The contents of the following antioxidant compounds were assessed neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, 4-feruloylquinic acid, isochlorogenic acid, rutoside, astragalin, caffeine, and indole derivatives. All the tested samples showed the presence of elements such as magnesium, zinc, copper, iron, and manganese. selleck chemical The highest antioxidant activity was determined for infusion prepared from yerba mate samples from Brazil.