Graybeyer0466

Z Iurium Wiki

Verze z 1. 10. 2024, 21:14, kterou vytvořil Graybeyer0466 (diskuse | příspěvky) (Založena nová stránka s textem „To identify the causes of decreased methylation in exposed mice, we measured commonly identified methylases and demethylases. We found a decreased expressi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

To identify the causes of decreased methylation in exposed mice, we measured commonly identified methylases and demethylases. We found a decreased expression of SUV40H2, a methylase primarily associated with H4K20me3. Further studies are needed to identify the causes for the decreased global histone methylation and potential therapeutic opportunities.Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A.Pit mud microbiota plays a key role in flavour production for Chinese strong-aroma type liquor. However, the pit mud microbiota cannot be cultured in laboratory. In this study, an oligotrophic medium with acetate as carbon source was used to enrich pit mud microbiota. The 16S rRNA gene amplicon sequencing was applied to examine the microbial dynamics of the enrichment consortia. Both methanogens and bacteria were simultaneously enriched. Euryarchaeota, Bacteroidetes and Firmicutes were the top 3 enriched phyla, and 31 genera were successfully enriched. More specifically, 11 genera (65%) out of the 17 dominant genera in pit mud were successfully enriched, including Petrimonas, Proteiniphilum, Anaerocella, Hydrogenispora, Methanosarcina, Fermentimonas, LNR_A2-18, Sedimentibacter, Lutispora, Syntrophomonas and Aminobacterium. Furthermore, 20 rare genera in the analyzed pit mud samples were also enriched. Aceticlastic Methanosaeta and Methanosarcina were found to be dominant methanogens in the enrichment consortia. Metagenomic sequencing was then applied to the enriched microbial consortia to explore the metabolic potentials of pit mud microbes. Aceticlastic methanogenesis pathway of Methanosaeta was reconstructed. Furthermore, 26 high-quality metagenome-assembled genomes (MAGs) were obtained based on the metagenomic binning analysis. Moreover, nutrients in pit mud were found to be crucial to sustain the methanogenesis of the enriched microbial consortia. These results suggested that the enrichment approach by using oligotrophic culturing can effectively cultivate the pit mud microbiota. Combined with metagenomics, the oligotrophic culturing will be greatly helpful to decipher the community composition and metabolic potentials of pit mud microbiota.Non-Saccharomyces yeasts have increasingly been used in vinification recently. This is particularly true of Torulaspora delbrueckii and Metschnikowia pulcherrima, which are inoculated before S. cerevisiae, to complete a sequential alcoholic fermentation. This paper aims to study the effects of these two non-Saccharomyces yeasts on malolactic fermentation (MLF) carried out by two strains of Oenococcus oeni, under cellar conditions. Oenological parameters, and volatile and phenolic compounds were analysed in wines. The wines were tasted, and the microorganisms identified. In general, non-Saccharomyces created more MLF friendly conditions, largely because of lower concentrations of SO2 and medium chain fatty acids. The most favourable results were observed in wines inoculated with T. delbrueckii, that seemed to promote the development of O. oeni and improve MLF performance.Meat and meat products are perishable products that require the use additives to prevent the spoilage by foodborne microorganisms and pathogenic bacteria. Current trends for products without synthetic preservatives have led to the search for new sources of antimicrobial compounds. Essential oils (EOs), which has been used since ancient times, meet these goals since their effectiveness as antimicrobial agents in meat and meat products have been demonstrated. Cinnamon, clove, coriander, oregano, rosemary, sage, thyme, among others, have shown a greater potential to control and inhibit the growth of microorganisms. Although EOs are natural products, their quality must be evaluated before being used, allowing to grant the Generally Recognized as Safe (GRAS) classification. The bioactive compounds (BAC) present in their composition are linked to their activity, being the concentration and the quality of these compounds very important characteristics. Therefore, a single mechanism of action cannot be attributed to them. Extraction technique plays an important role, which has led to improve conventional techniques in favour of green emerging technologies that allow to preserve better target bioactive components, operating at lower temperatures and avoiding as much as possible the use of solvents, with more sustainable processing and reduced energy use and environmental pollution. this website Once extracted, these compounds display greater inhibition of gram-positive than gram-negative bacteria. Membrane disruption is the main mechanism of action involved. Their intense characteristics and the possible interaction with meat components make that their application combined with other EOs, encapsulated and being part of active film, increase their bioactivity without modifying the quality of the final product.The ratio of venoarterial CO2 tension to arteriovenous O2 content difference (P[v-a]CO2/C[a-v]O2) increases when lactic acidosis is due to inadequate oxygen supply (hypoxia); we aimed to verify whether it also increases when lactic acidosis develops because of mitochondrial dysfunction (dysoxia) with constant oxygen delivery. Twelve anaesthetised, mechanically ventilated pigs were intoxicated with IV metformin (4.0 to 6.4 g over 2.5 to 4.0 h). Saline and norepinephrine were used to preserve oxygen delivery. Lactate and P[v-a]CO2/C[a-v]O2 were measured every one or two hours (arterial and mixed venous blood). During metformin intoxication, lactate increased from 0.8 (0.6-0.9) to 8.5 (5.0-10.9) mmol/l (p less then 0.001), even if oxygen delivery remained constant (from 352 ± 78 to 343 ± 97 ml/min, p = 0.098). P[v-a]CO2/C[a-v]O2 increased from 1.6 (1.2-1.8) to 2.3 (1.9-3.2) mmHg/ml/dl (p = 0.004). The intraclass correlation coefficient between lactate and P[v-a]CO2/C[a-v]O2 was 0.72 (p less then 0.001). We conclude that P[v-a]CO2/C[a-v]O2 increases when lactic acidosis is due to dysoxia.

Autoři článku: Graybeyer0466 (Skriver Haagensen)