Gambleestrada9752
We analyzed the effects of ginsenoside Rb1 on hyperlipidemic in model mice. Using stool, plasma and hepatic tissue samples, we observed that the genera Blautia and Allobaculum were increased and Turicibacter was decrease in Rb1-treated mice as compared to untreated model mice. Ether lipid metabolism, glycerolipid metabolism, and glyoxylate and dicarboxylate metabolism were differentially enriched between the Rb1 and model groups. Lipidomics revealed 169 metabolites differentially expressed between the model and Rb1 groups in a positive ion model and 58 in a negative ion model. These metabolites mainly participate in glycerophospholipid, linoleic acid, and alpha-linolenic acid metabolism. The main metabolites enriched in these three pathways were phosphatidylcholine, diacylglycerol and ceramide, respectively. In a transcriptome analysis, 766 transcripts were differentially expressed between the Rb1 and model groups. KEGG analysis revealed lysine degradation, inositol phosphate metabolism, and glycerophospholipid metabolism to be the main enriched pathways. Multiomics analysis revealed glycerophospholipid metabolism to be a common pathway and phosphatidylcholine the main metabolite differentially enriched between the Rb1 and model groups. Results from fecal transplanted germ-free mice suggest that to suppress hyperlipidemia, Rb1 regulates gut microbiota by regulating the synthesis and decomposition of phosphatidylcholine in glycerophospholipid metabolism, which in turn decreases serum total cholesterol.In this study, we using the in vivo destabilization of the medial meniscus (DMM) mouse model to investigate the role of bone morphogenetic protein 5 (BMP5) in osteoarthritis (OA) progression mediated via chondrocyte senescence and apoptosis. BMP5 expression was significantly higher in knee articular cartilage tissues of OA patients and DMM model mice than the corresponding controls. The Osteoarthritis Research Society International scores based on histological staining of knee articular cartilage sections were lower in DMM mice where BMP5 was knocked down in chondrocytes than the corresponding controls 4 weeks after DMM surgery. DMM mice with BMP5-deficient chondrocytes showed reduced levels of matrix-degrading enzymes such as MMP13 and ADAMTS5 as well as reduced cartilage destruction. BMP5 knockdown also decreased chondrocyte apoptosis and senescence by suppressing the activation of p38 and ERK MAP kinases. These findings demonstrate that BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as OA progression by downregulating activity in the p38/ERK signaling pathway.Mesenchymal stem cells (MSCs) have attracted more attention in antitumor therapy by using MSCs as vehicles or targeting modulators of MSCs. But their role and mechanisms in tumor progression are less known. In the present study, we successfully isolated pairs of MSCs from lung cancer (LC-MSCs) and adjacent tumor-free tissues. Based on the coculture system in vitro and animal studies in vivo, we originally found that LC-MSCs significantly promoted tumor metastasis and tumorigenesis both in vitro and in vivo. Partial epithelial-mesenchymal transition (EMT) was induced in lung cancer cells by LC-MSCs by the evidence of remarkable increase in snail and slug expression but not in other EMT-associated genes. The expression of stem related genes also escalated significantly. And spheroids perfectly formed when tumor cells were co-incubated with LC-MSCs. These results revealed a close link of partial EMT and acquisition of stem-like traits in lung cancer cells which was induced by LC-MSCs and greatly promoted metastasis and tumorigenesis in lung cancer. Our findings provided a new insight into LC-MSCs in tumor progression and helped to identify LC-MSCs as a potential vehicle or target for lung cancer therapy.Although a previous pan-cancer study has reported the expression patterns of ITIHs in various tumors, their analyses have been restricted to limited cancer types. We thus comprehensively analyzed the expression profiles and clinical significances of ITIHs in a broader spectrum of cancers from TCGA. Our results showed that ITIHs were primarily down-regulated in tested cancers. The ITIH members were associated with either survival advantage or disadvantage, depending on the cancer type tested and the genes queried. Importantly, we for the first time demonstrated that ITIH1 had substantially decreased expression in liver hepatocellular carcinoma (LIHC) compared with corresponding normal tissue, and its down-regulation adversely impacted patient outcome. Moreover, ITIH1 expression was consistently declining during the progression of LIHC. Further analysis revealed that ITIH1 may be involved in cellular metabolic processes. Our findings established ITIH1 as a potential diagnostic and prognostic biomarker for LIHC, which awaits future experimental validation.
Early diagnosis of osteoarticular tuberculosis helps improve patients' outcomes, but little is known about the accuracy of noninvasive diagnostic methods. This case-control study aimed to assess the diagnostic value of peripheral blood T-cell spot of tuberculosis assay (T-SPOT.TB) and magnetic resonance imaging (MRI).
Patients suspected with osteoarticular tuberculosis were retrospectively included and diagnosed according to the composite reference standard. T-SPOT.TB was used to detect the number of cells secreting Interferon gamma. Diagnostic performance of T-SPOT.TB and MRI alone and combined were evaluated.
Among the suspected patients, 92 had osteoarticular tuberculosis and 137 non- osteoarticular tuberculosis. T-SPOT.TB assay alone had a higher sensitivity (0.73 vs. 0.60) but a lower specificity (0.69 vs. 0.91 P>0.05) in diagnosing osteoarticular tuberculosis. Combined serial test showed a sensitivity and specificity 0.47, 0.97, respectively, whereas combined parallel test showed a sensitivity and specificity of 0.86, 0.65, respectively. selleck chemicals Specificity was higher in the combined serial test than in the T-SPOT.TB assay (P=0.007) or MRI alone (P < 0.001). Furthermore, sensitivity was higher in the combined parallel test than in the T-SPOT.TB assay (P < 0.001) or MRI alone (P < 0.001).
Combined blood T-cell spot of tuberculosis assay and osteoarticular MRI have higher sensitivity and specificity for noninvasive osteoarticular tuberculosis diagnosis, compared with either method alone.
Combined blood T-cell spot of tuberculosis assay and osteoarticular MRI have higher sensitivity and specificity for noninvasive osteoarticular tuberculosis diagnosis, compared with either method alone.