Demantmcknight8660

Z Iurium Wiki

Verze z 1. 10. 2024, 20:11, kterou vytvořil Demantmcknight8660 (diskuse | příspěvky) (Založena nová stránka s textem „Microfluidics based techniques for generation of cell-laden microbeads are emerging as an attractive route to 3D cell encapsulation due to the precise cont…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Microfluidics based techniques for generation of cell-laden microbeads are emerging as an attractive route to 3D cell encapsulation due to the precise control provided by microfluidics. 3Methyladenine However, existing microfluidics based cell encapsulation methods are restricted to 2D planar devices and use of passive methods for droplet generation. In this work, we report the development of a 3D glass-PDMS (polydimethylsiloxane) hybrid device for complete on-chip generation of cell-laden alginate beads in the presence of electric fields. The 3D hybrid device allows application of electric fields for active control of droplet (sodium alginate) size without the need for electrode patterning or liquid electrodes. Chemical gelation is achieved through on-chip coalescence of sodium alginate droplets and calcium chloride plugs, generated using coflow and T-junction geometries respectively. Using this approach, we successfully encapsulate E. coli cells (with viability ∼90 %) into alginate microbeads and perform comprehensive spatio-temporal growth and viability studies. The active control of droplet size coupled with complete on-chip gelation demonstrated here is a promising technology for cell encapsulation with applications such as cell therapy, organ repair, biocatalysis, and microbial fuel cells.Antimicrobial peptides/DNA complexes were designed based on AMPs chensinin-1b and its corresponding lipo-chensinin-1b conjugated with an aliphatic acid with different chain lengths and therapeutic genes. The main goal of such a complex includes two aspects first, antimicrobial peptides deliver therapeutic genes to cancer cells and genes expressed in targeted tissue for cancer gene therapy, and, second, the antimicrobial peptide kills cancer cells when used alone as an anticancer agent. link2 This study presents a model composed of chensinin-1b and its lipo-chensinin-1b and eGFP plasmids, which were used as reporter genes, and the final peptide/eGFP plasmid complexes were analyzed by TEM and DLS. The gene transfection efficiency of the complex was evaluated by a microplate reader, FACS and CLSM. Compared with Lipo2000, the antimicrobial peptide showed specific selectivity for transfection against cancer cells and mammalian cells. The peptides chensinin-1b and lipo-chensinin-1b binding with the eGFP plasmid displayed optimal transfection efficiencies at a mass ratio of 8. In addition, PA-C1b can deliver p53-eGFP plasmids into MCF-7 cancer cells, and the proliferation of cells was inhibited and even caused cell death. Overall, PA-C1b was screened and found to have the highest transfection efficiency for gene delivery and good cellular uptake capability. The in vivo transfection ability of PA-C1b was investigated using a tumor-bearing mouse model, and the transfection efficiency reflected by the fluorescence of expressed GFP was determined by in vivo imaging. Conclusively, the antimicrobial peptide PA-C1b could be used as the nonviral vector with high efficiency for cancer gene therapy.Fe3O4 nanoparticle loaded with silver ion was prepared as a more efficient, safer, and less environmentally hazardous silver-based antibacterial nanomaterial. link3 The Fe3O4 nanoparticle was modified using 3-aminopropyl trimethoxysilane (APTMS) to enhance the silver ion adsorption capacity and antibacterial activity. Silver ions were adsorbed on pristine Fe3O4 and Fe3O4@NH2 to enhance antibacterial activity. Energy dispersive spectroscopy (EDS) results showed that Fe3O4 adsorbed 2.74 wt% of Ag, whereas Fe3O4@NH2 adsorbed 9.88 wt%. Pristine Fe3O4NP, silver ion loaded Fe3O4 (Fe3O4-Ag), and silver ion loaded Fe3O4@NH2 (Fe3O4@NH2-Ag) were used to manufacture carrageenan-based composite films. Compared with Fe3O4-Ag, Fe3O4@NH2-Ag exhibited stronger antimicrobial activity against E. coli (8.82 vs. 5.02 log reduction) and L. monocytogenes (10.09 vs. 3.93 log reduction). While the addition of Fe3O4 significantly reduced the WCA of the carrageenan films from 61.1 ± 5.4 ° to 37.2 ± 2.1 °, the additions of Fe3O4-Ag and Fe3O4@NH2-Ag reduced the WCA of the film to a lesser extent (56.9 ± 4.6 ° and 56.9 ± 4.6 °, respectively). Fe3O4NP also improved the thermal stability of carrageenan over Fe3O4@NH2-Ag (22 °C vs. 13 °C) and UV blocking properties (T280, 0.1 ± 0.0 % vs. 3.3 ± 1.5 %).The levels of messenger RNA (mRNA) transcription of FOXP3, IFN-γ, TNF, IL-6 and COX-2 from both COVID-19 infected and control subjects were evaluated using SYBRTM green real-time polymerase chain reaction (RT-PCR). Severe/critical cases showed significantly lower lymphocyte counts and higher neutrophil counts than the mild or moderate cases. There were significantly lower levels of mRNA expressions of IFN-γ, TNFα and FOXP3 in COVID-19 patients than in the control group. On the other hand, IL-6 and COX-2 expressions were significantly higher in patients suffering from severe disease. FOXP3 expressions were correlated with the severities of hypoxia and were excellent in predicting the disease severity. This was followed by the IL-6, COX-2 and TNFα expressions. FOXP3 expression was the only biomarker to show a significant correlation with patient mortality. It was concluded that SARS-CoV-2 infection is associated with the downregulation of FOXP3 and upregulations of IL-6 and COX-2.

Prior research has found a high prevalence of academic burnout among medical students (33-55%), and medical education institutions have begun to address the issue. In this research, we hypothesized an increase in academic burnout during medical education, as supported by previous findings. The second purpose was to identify the significant predictors (among perceived stress, empathy, and perceived social support) of academic burnout and determine their respective importance.

The study design was a cross-sectional online and anonymous survey.

We recruited medical students (N=342) from four education year-groups (i.e. Bachelor 1 and 3; Master 1 and 3). All participants voluntarily responded to our anonymous study and filled in four questionnaires assessing academic burnout, perceived stress, empathy, and perceived social support. We performed a multivariate analysis of variance on academic burnout and hierarchical regression analyses to determine the respective importance of risk and protective factors ofhy had a double edge nature (the two cognitive empathy domains had opposite effects); and (3) perceived social support was identified as a protective factor. Thus, a novel dimension of this research was to investigate and describe the importance of several predictors of academic burnout. The implications are crucial for education, and several recommendations are discussed to prevent academic burnout.Sewage sludge biochar (SSB) is a multi-nutrient fertilizer with very low K concentration. This study presents a novel K-enriched SSB fertilizer with the potential to increase K use efficiency by crops. The object of this work was therefore to evaluate the physical-chemical, morphological and mineralogical characteristics of a SSB organomineral fertilizer (OSSB) enriched with K. SSB was enriched with KCl and K2SO4 using three technological methods (granules, pellets and powders). The enrichment of SSB with K ensured a K2O content about 75 times higher than the pure SSB. Organominerals in powder form had higher levels of total nitrogen, calcium, sulfur, phosphorus and higher pH than granules and pellets. The morphology and physical characteristics of enriched OSSBs were more influenced by the form of the fertilizer than by the source of K. In general, the enriched OSSBs are influenced by the quantities of feedstocks and the enrichment technology.This work proposes an efficient and simple hydrometallurgical process based on a chlorination step followed by an ion-exchange step for recycling gold (Au) from a waste printed circuit boards (WPCBs) enriched in Au resulting from a first leaching step under mild oxidizing conditions for extracting Cu and other base metals. Under optimized [3.5 mol/L HCl and 0.46 mol/L NaClO, with a liquid/solid (L/S) ratio of 40, at 40 °C for 3 h with agitation] leaching conditions, 95% Au was extracted from the residue originating a multi-metal solution containing 1.0% Au. Subsequently, Au (initial concentration 38 µmol/L) present in the multimetal-leached solution was purified in continuous mode using two strong anionic exchange resins DOW™ XZ-91419.00 and Purogold™ A194. Both resins were suitable in purifying Au from the multimetal-leaching solution, with at least 70% of Au recovered relative to the initial residue. When the DOW™ XZ-91419.00 resin was used, a solution containing 1.7 mmol/L Au with a purity grade of 94% was obtained, with Pb and Sn being the major contaminants (3.3 and 2.4%, respectively). For Purogold™ A194 resin, a solution containing 0.73 mmol/L Au with a purity grade of 92% was achieved; Ag, Pb and Pd were the major contaminants (1.4, 3.6 and 1.8%, respectively). In conclusion, this work demonstrates a novel hydrometallurgical strategy for recycling Au with a high grade from WPCBs, minimizing the number of leaching and purification steps and the amount of waste created.The objective of this study is to assess the environmental value of recirculating nutrients from treated sewage sludge by application to agricultural soils to grow forage as opposed to landfilling and incineration. The methodological choices are aligned to the circular economy framework using life cycle assessment. Consequential modeling and open loop modeling were adopted and adhere to ISO 14044 and International Reference Life Cycle Data System (ILCD) standards. The functional unit is defined in terms of the amounts of nitrogen (N), phosphorus (P) and potassium (K) recirculated from the treated sewage sludge produced annually in Kuwait. The results indicate a reduction in environmental burden with respect to fossil fuel depletion, metal depletion and climate change. A total of 95% of the reduction is realized by avoiding virgin nitrogen production and instead using its recirculated counterpart. Considerable amounts of natural gas, coal, dinitrogen monoxide (nitrous oxide, N2O) and copper are consumed during virgin N fertilizer production.A better understanding of the waste of end-of-life batteries from electric vehicles (EVs) is a basis for their sustainable management. This study aims to estimate the waste of end-of-life EV batteries during 2006-2040 in China and to analyze the opportunities and challenges of subsequent utilization, based on a developed numerical model, real market data, and elaborately developed scenarios. The result shows that end-of-life batteries would increase from 0.1 to 7.8 thousand tons during 2012-2018, and then to 1500-3300 thousand tons in 2040. Of the waste streams, around 50% are estimated to be metal materials, representing great opportunities for battery recycling for material recovery. Economically, battery recycling for energy storage is estimated to create more economic benefits compared with that for material recovery solely (147.8 versus 76.9 billion US dollars). However, the supply of end-of-life batteries can hardly meet the demand for renewable energy storage in the near future, and a spatial mismatch of the supply and demand of energy storage capacity exists between the eastern and western regions in China.

Autoři článku: Demantmcknight8660 (Handberg Bilde)