Therkelsenkatz3601

Z Iurium Wiki

Verze z 1. 10. 2024, 19:16, kterou vytvořil Therkelsenkatz3601 (diskuse | příspěvky) (Založena nová stránka s textem „Mesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Mesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in nanomedicine as imaging and therapeutic carriers. Most of these studies focused on spherical particles. Blasticidin S ic50 In contrast, mesoporous silica rods (MSR) that are more challenging to prepare have been less investigated in terms of toxicity, cellular uptake, or biodistribution. Interestingly, previous studies showed that silica rods penetrate fibrous tissues or mucus layers more efficiently than their spherical counterparts. Recently, we reported the synthesis of MSR with distinct aspect ratios and validated their use in multiple imaging modalities by loading the pores with maghemite nanocrystals and functionalizing the silica surface with green and red fluorophores. Herein, based on an initial hypothesis of high liver accumulation of the MSR and a future vision that they could be used for early diagnosis or therapy in fibrotic liver diseases; the cytotoxicity and ion times (20% of the administered dose) was confirmed by both FMI and MRI, highlighting the utility of the MSR for liver imaging by both techniques. Our results could open new avenues for the use of rod-shaped silica particles in the diagnosis of pathological liver conditions.By performing first-principles calculations, a MoS2 monolayer with a Co atom doped at the sulfur defect (Co-SMoS2) was investigated as a single-atom catalyst (SAC) for CO oxidation. The Co atom is strongly constrained at the S-vacancy site of MoS2 without forming clusters by showing a high diffusion energy barrier, ensuring good stability to catalyze CO oxidation. The CO and O2 adsorption behavior on Co-SMoS2 surface and four reaction pathways, namely, the Eley-Rideal (ER), Langmuir-Hinshelwood (LH), trimolecular Eley-Rideal (TER) as well as the New Eley-Rideal (NER) mechanisms are studied to understand the catalytic activity of Co-SMoS2 for CO oxidation. The CO oxidation is more likely to proceed through the LH mechanism, and the energy barrier for the rate-limiting step is only 0.19 eV, smaller than that of noble metal-based SACs. Additionally, the NER mechanism is also favorable with a low energy barrier of 0.26 eV, indicating that the Co-SMoS2 catalyst can effectively promote CO oxidation at low temperatures. Our investigation demonstrates that the S-vacancy of MoS2 plays an important role in enhancing the stability and catalytic activity of Co atoms and Co-SMoS2 is predicted to be a promising catalyst for CO oxidation.The excessive use of sodium hypochlorite disinfectant for preventing COVID-19 can be harmful to the water environment and humans. More importantly, owing to hypochlorite being a biomarker of immune responses in living organisms, its abnormal production can damage nucleic acids and protein molecules, eventually causing many diseases (even cancer). Exploring a reliable, rapid, and non-invasive method to monitor the hypochlorite level in vitro and in cells can be significant. Herein, we report a novel ratiometric fluorescence sensing strategy based on Astrazon Brilliant Red 4G dye-sensitized NaGdF4Yb3+, Er3+@NaYF4 core-shell upconversion nanoparticles (UCNPs@ABR 4G). Based on the combination mechanism of the fluorescent resonant energy transfer effect (FRET) and redox, a linear model of fluorescence intensity ratio and hypochlorite concentration was constructed for a fast response and high selectivity monitoring of hypochlorite in vitro and in vivo. The detection limit was calculated to be 0.39 μM. In addition, this sensing strategy possessed good stability and circularity, making it valuable both for the quantitative detection of hypochlorite in water and for the visualization of intracellular hypochlorite. The proposed optical probe is promising for the efficient and stable non-invasive detection of hypochlorite.In this study alginate-based microbubbles with a raspberry-like or core-shell-like morphology and with an average particle size of 553.6 ± 69.6 μm were synthesized; this was done through a novel procedure of transforming the structure with a 40 kHz ultrasonication which also stimulated the release of the components inside. Through the use of the electrospray technique in conjunction with agitation processes, components such as shikonin (SHK) and indocyanine green (ICG) were simultaneously encapsulated in alginate microbubbles to produce SHK-ICG alginate microbubbles; these microbubbles had half-maximal inhibitory concentrations of approximately 2.08 and 4.43 μM toward CP70 and SKOV3 ovarian cancer-cell lines, respectively, in an in vitro cell model. Moreover, these SHK-ICG alginate microbubbles enhanced brightness by 2.5 fold in ultrasound imaging relative to CaCl2 medium only. In conclusion, SHK-ICG alginate microbubbles have promise for use in theranostics.As known, mercury contamination is one of the current environmental issues due to the high toxicity of mercury. Corn bract (CB) is an agricultural by-product, and its final treatment is generally incineration that causes air pollution. In this study, a new type of high-efficiency biomass adsorbent (CB@MoS2) for adsorption of Hg(ii) was obtained, and its morphology and structure were characterized with FT-IR, XRD, SEM and TEM. The results showed that when the pH value, Hg(ii) ion concentration and adsorption time were 4, 100 mg L-1 and 120 min, the adsorption capacity and removal rate could reach 332.50 mg g-1 and 99.75%. In addition, CB@MoS2 had a good selectivity for Hg(ii) ions. The adsorption behavior followed pseudo-second-order kinetics, indicating that the adsorption of Hg(ii) ions by CB@MoS2 was a chemical adsorption. After five adsorption-desorption experiments, it still possessed good adsorption performance and effective regeneration. In short, CB@MoS2 has high efficiency and good reusability, and will become a candidate material for the treatment of mercury-containing industrial wastewater.The present work mainly focuses on the fabrication of a porous glass 40SiO2-35H3BO3-19V2O5-6P2O5 via a melt-quenching technique. The structural, morphological, and sensing behaviour of the glass sample was investigated successfully. The calculated density and molar volume of the fabricated glass are 2.4813 ± 0.124 g cm-3 and 35.7660 ± 1.708 cm3 mol-1. XRD, SEM and TEM analyses confirmed the amorphous nature of the glass. FTIR results revealed the O-H bond formations, which indicate that the presence of water molecules is probably due to the porous nature of the glass. Further, BET analysis confirmed the mesoporous nature of the glass sample with a mean pore diameter of 7 nm. The sensing response of the synthesized glass at 1000 ppm concentration of CO2 was found to be 3.05 with a response time 22.6 s and recovery time 25.8 s. Hence, this porous glass can be easily synthesized, is affordable, and was found to be useful for CO2 gas sensing applications.With doping concentration varying from 0.1 to 5.0 mol%, a series of Dy3+ doped calcium aluminate (CaAl2O4Dy3+) phosphors were synthesized via a sol-gel combustion technique. The phase, morphology, photoluminescence (PL), afterglow, and thermoluminescence (TL) glow curves of CaAl2O4Dy3+ were investigated by means of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, PL spectroscopy, afterglow spectroscopy, and TL dosimetry, respectively. It is found that (i) oxygen vacancies and Dy3+ work as two independent sets of luminescence centers of PL for CaAl2O4Dy3+; (ii) Dy3+ works as the luminescence center of afterglow for CaAl2O4Dy3+; (iii) the afterglow of CaAl2O4Dy3+ lasts for about 115 min at the optimal doping concentration of around 0.8 mol%; and (iv) multiple traps, which are sensitive to doping concentration, are present in CaAl2O4Dy3+. The PL and afterglow mechanisms of CaAl2O4Dy3+ are discussed to reveal the processes of charged carrier excitation, migration, trapping, detrapping, and radiative recombination in CaAl2O4Dy3+.We report a highly efficient nano-optical method for transforming a single yeast cell using exogenous genes. It used laser tweezers or micromanipulators to immobilize the cell immersed in a DNA solution and created a transient nano-sized hole on its cell wall concurrently with laser scissors to deliver nano moles of DNA into the cell. With this method, one can directly transfer the naked DNA of exogenous genes into yeast cells for transformation. We successfully transformed S. cerevisiae yeasts respectively with GFP (Green Fluorescent Protein) plasmid and the nucleic acid extraction of a bacteria GF1 from the gut of Coptotermes formosanus termites. The experimental results demonstrated that the recombinants had high survival rate and transformation efficiency (28%). The recombinant GFP-yeast system showed green fluorescence for generations. GF1 DNA sequences were incorporated into the yeast genome as a heritable component with stable expression for multi-generations so that the recombinant GF1-yeast had a strong capability of digesting biomass as GF1. Our method would apply to different cells with cell walls for various gene transformations.The new objective of sustainable analytical chemistry is to develop validated robust, swift, simple and highly sensitive analytical methods that are based on cost effective sensing technology. Therefore, in this study the electro-chemical detection of coenzyme Q10 (CoQ10) was achieved using a fluorene intercalated graphene oxide based CoQ10 imprinted polymer composite modified glassy carbon electrode (CoQ10-IGOPC/GCE). The synthesized sensing material was characterized using SEM, XRD and FT-IR to determine the morphology and functional properties. The CoQ10-IGOPC/GCE was characterized by EIS for its electrochemical properties. CoQ10 was detected selectively using Differential Pulse Voltammetry (DPV). Under ideal circumstances, a linear calibration curve with a correlation coefficient (R 2) of 0.991 was produced in the concentration range of 0.0967 to 28.7 μM. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.029 and 0.0967 μM, respectively. Furthermore, the proposed electrochemical sensor was extremely selective, accurate and thoroughly validated with RSD values less than 5%. The developed CoQ10-IGOPC/GCE based electrochemical sensor was successfully used for the detection of CoQ10 in samples of fruits, vegetables, nuts, human blood serum and pharmaceuticals. The CoQ10-IGOPC/GCE based electrochemical method showed good percent recoveries ranging from 94 to 103 percent.[This corrects the article DOI 10.1039/D2RA04479J.].Herein, a highly active Z-scheme SnS/Zn2SnO4 photocatalyst is fabricated by a one-step hydrothermal route. The structure, composition, photoelectric and photocatalytic properties of the as-prepared photocatalysts are systematically researched. The results demonstrate that SZS-6 displays a good photocatalytic performance with an efficiency of 94.5% to degrade methylene blue (MB) under visible light irradiation (λ > 420 nm). And its degradation rate constant is up to 0.0331 min-1, which is 3.9 and 4.4 times faster than SnS and Zn2SnO4, respectively. The formation of a Z-scheme heterojunction facilitates the separation and transfer of charges, which improves the degradation of MB. The Z-scheme charge transfer pathway of the SnS/Zn2SnO4 photocatalyst is verified by the shifted peaks of the X-ray photoelectron spectroscopy (XPS) spectrum, the relative position of the bandgap, work function as well as free radical trapping experiments. The photocatalytic mechanism for the degradation of MB by SnS/Zn2SnO4 is proposed.

Autoři článku: Therkelsenkatz3601 (Harding Balslev)