Mannfournier4885
The majority of included studies had insufficient power to detect significant differences in the outcomes assessed.
This review shows that predominantly positive findings were found in the use of a PROM in daily cancer care. Additionally, more positive effects were seen when feedback is provided to patient and/or health care professionals, and it is thus highly recommended that this is always done.
This review shows that predominantly positive findings were found in the use of a PROM in daily cancer care. Additionally, more positive effects were seen when feedback is provided to patient and/or health care professionals, and it is thus highly recommended that this is always done.
The purpose of the reported study was to investigate the value of cone-beam computed tomography (CBCT)-based radiomics for risk stratification and prediction of biochemical relapse in prostate cancer.
The study population consisted of 31prostate cancer patients. Radiomics features were extracted from weekly CBCT scans performed for verifying treatment position. From the data, logistic-regression models were learned for establishing tumor stage, Gleason score, level of prostate-specific antigen, and risk stratification, and for predicting biochemical recurrence. Performance of the learned models was assessed using the area under the receiver operating characteristic curve (AUC-ROC) or the area under the precision-recall curve (AUC-PRC).
Results suggest that the histogram-based Energy and Kurtosis features and the shape-based feature representing the standard deviation of the maximum diameter of the prostate gland during treatment are predictive of biochemical relapse and indicative of patients at high risk.
Our results suggest the usefulness of CBCT-based radiomics for treatment definition in prostate cancer.
Our results suggest the usefulness of CBCT-based radiomics for treatment definition in prostate cancer.Intracellular viscosity is closely related to a series of biological processes and could be a biomarker for various diseases. Herein, we reported a deep-red emission viscosity probe ACI, which showed a turn-on fluorescence effect with excellent selectivity encountering high viscous medium. To assure the practical biological application, ACI demonstrated not only a long wavelength emission at 634 nm but also a long wavelength excitation at 566 nm, which were crucial to afford deeper penetration depth and higher sensitivity in bioimaging. The photophysical properties and viscosity recognition mechanism of the probe were carefully discussed here. Theoretical calculations furtherly confirmed that high viscous medium could inhibit the twisted intramolecular charge transfer (TICT) process of the probe which quenched the fluorescence in low viscous media, and restore the emission. More importantly, it was successfully applied to visualize the viscosity in living cells. Graphical abstract.The metabolomic profiles of four major species of cinnamon (Cinnamomum verum, C. burmannii, C. loureiroi, and C. cassia) were investigated by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Thirty-six metabolites were tentatively characterized, belonging to various compound groups such as phenolic glycosides, flavan-3-ols, phenolic acids, terpenes, alkaloids, and aldehydes. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) on the HRMS data matrix resulted in a clear separation of the four cinnamon species. Coumarin, cinnamaldehyde, methoxycinnamaldehyde, cinnamoyl-methoxyphenyl acetate, proanthocyanidins, and other components varied among the four species. Such variations were used to develop a step-by-step strategy for differentiating the four cinnamon species based on their levels of pre-selected components. This study suggests a significant variation in the phytochemical compositions of different cinnamon species, which have a direct influence on cinnamon's health benefit potentials. Graphical Abstract.The research and the individuation of tumour markers in biological fluids are currently one of the main tools to support diagnosis, prognosis, and monitoring of the therapeutic response in oncology. Although the identification of tumour markers in asymptomatic patients is crucial for early diagnosis, its application is still limited by the relatively low sensitivity and the complexity of existing methods (i.e. ELISA, mass spectrometry). We developed an easy, fast, and ultrasensitive surface-enhanced Raman scattering (SERS)-based system, for the detection and quantitation of the LGALS3BP (90K) biomarker that was used as a model, based on the development of antibody-functionalized nanostructured gold surfaces. The detection system was effective for the ultrasensitive detection and characterization of samples of different biochemical compositions. In conclusion, this work could provide the foundation for the development of a medical diagnostic device with the highest predictive power when compared with the methods currently used in cancer diagnostics.The probiotic bacteria are helpful for nutritional and therapeutic purposes, and they are commercially available in various forms, such as capsules or powders. Increasing pieces of evidence indicate that different growth conditions and variability in manufacturing processes can determine the properties of probiotic products. In recent years, the lipidomic approach has become a useful tool to evaluate the impact that probiotics induce in host physiology. In this work, two probiotic formulations with identical species composition, produced in two different sites, the USA and Italy, were utilized to feed Caenorhabditis elegans, strains and alterations in lipid composition in the host and bacteria were investigated. Indeed, the multicellular organism C. elegans is considered a simple model to study the in vivo effects of probiotics. Nematodes fat metabolism was assessed by gene expression analysis and by mass spectrometry-based lipidomics. Lipid droplet analysis revealed a high accumulation of lipid droplets in worms fed US-made products, correlating with an increased expression of genes involved in the fatty acid synthesis. We also evaluated the lifespan of worms defective in genes involved in the insulin/IGF-1-mediated pathway and monitored the nuclear translocation of DAF-16. These data demonstrated the involvement of the signaling in C. elegans responses to the two diets. Lipidomics analysis of the two formulations was also conducted, and the results indicated differences in phosphatidylglycerol (PG) and phosphatidylcholine (PC) contents that, in turn, could influence nematode host physiology. #link# Results demonstrated that different manufacturing processes could influence probiotics and host properties in terms of lipid composition. KEY POINTS • Probiotic formulations impact on Caenorhabditis elegans lipid metabolism; • Lipidomic analysis highlighted phospholipid abundance in the two products; • Phosphocholines and phosphatidylglycerols were analyzed in worms fed the two probiotic formulations.Mannosylerythritol lipids (MEL) are glycolipids mainly produced by pseudo-yeasts. These molecules present remarkable biological activities widely explored in many fields, including medicine, pharmaceuticals, and cosmetics. This review presents the main biological activity of MEL on the HL60, K562, B16, PC12, and skin cells. There is strong evidence that MEL changes the levels of glycosphingolipids of HL-60 lineage, which induce differentiation into granulocytic cells. Regarding B16 cells, MEL can trigger both apoptosis (10 μM) and cell differentiation (5 μM), in which the MEL concentration is related to each metabolic pathway. MEL can also trigger differentiation in PC12 cells due to the increase in the GalCer content. In this specific case, the effects are transient, and the differentiated cells are unstable and tend to apoptosis. MEL-B can particularly maintain skin hydration and moisture due to their self-assembled structures that resemble the tissue cells. Moreover, MEL-B repair aquaporin expression in the HaCaT keratinocytes damaged with UVA irradiation, whereas MEL-C suppresses the expression of COX-2 protein in fibroblasts, indicating that these glycolipids activate the cellular antioxidant mechanism. link2 Recent findings denoted the anti-melanogenic activity of MEL since they suppress tyrosinase enzyme at mRNA levels in B16 and NHMs cells. MEL act effectively on mammalian cells; however, there is no clear pattern of their metabolic effects. link3 Also, gene expression levels seem to be related to two main factors chemical structure and concentration. However, the specific signaling cascades that are induced by MEL remain inconclusive. Thus, further investigations are vital to understanding these mechanisms clearly. KEY POINTS • The four MEL homologs promote different biological responses in mammalian cells. • MEL modifies the pattern of glycosphingolipids in the plasma membrane of tumor cells. • Activation/deactivation of phosphorylation of serine/threonine kinase proteins.Gluten is a cereal protein that is incompletely digested by human proteolytic enzymes that create immunogenic peptides that accumulate in the gastrointestinal tract (GIT). Although both environmental and human bacteria have been shown to expedite gluten hydrolysis, gluten intolerance is a growing concern. Here we hypothesize that together with food, we acquire environmental bacteria that could impact our GIT with gluten-degrading bacteria. Using in vitro gastrointestinal simulation conditions, we evaluated the capacity of endophytic bacteria that inhabit root vegetables, potato (Solanum tuberosum), carrot (Daucus sativus), beet (Beta vulgaris), and topinambur (Jerusalem artichoke) (Helianthus tuberosus), to resist these conditions and degrade gluten. By 16S rDNA sequencing, we discovered that bacteria from the families Enterobacteriaceae, Bacillaceae, and Clostridiaceae most effectively multiply in conditions similar to the human GIT (microoxic conditions, 37 °C) while utilizing vegetable material and gluten as nutrients. Additionally, we used stomach simulation (1 h, pH 3) and intestinal simulation (1 h, bile salts 0.4%) treatments. The bacteria that survived this treatment retained the ability to degrade gluten epitopes but at lower levels. Four bacterial strains belonging to species Bacillus pumilus, Clostridium subterminale, and Clostridium sporogenes isolated from vegetable roots produced proteases with postproline cleaving activity that successfully neutralized the toxic immunogenic epitopes. KEY POINTS • Bacteria from root vegetables can degrade gluten. • Some of these bacteria can resist conditions mimicking gastrointestinal tract.Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. https://www.selleckchem.com/products/NVP-TAE684.html lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues.