Smedegaardpost0598

Z Iurium Wiki

Verze z 1. 10. 2024, 16:24, kterou vytvořil Smedegaardpost0598 (diskuse | příspěvky) (Založena nová stránka s textem „The results demonstrated that miR-128-3p directly targeted ZC3H12D and downregulated its expression, thereby promoting cell proliferation and migration. mi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The results demonstrated that miR-128-3p directly targeted ZC3H12D and downregulated its expression, thereby promoting cell proliferation and migration. miR-128-3p overexpression also improved resistance to cisplatin in MG-63 and 143B cell lines, supporting the hypothesis that miR-128-3p may function as an oncogene in osteosarcoma cells. The potential clinical significance of miR-128-3p as a biomarker and therapeutic target provides rationale for further investigation into the miR-128-3p-mediated molecular pathway and how it is associated with osteosarcoma development.The aim of the present study was to investigate the molecular characteristics of hereditary multiple osteochondromas (HMO) in a subset of Jordanian patients with a focus on the genetic variants of exostosin (EXT1)/(EXT2) and their protein expression. Patients with HMO and their family members were included. Recorded clinical characteristics included age, sex, tumors number and location, joint deformities and associated functional limitations. Mutational analysis of EXT1 and EXT2 exonic regions was performed. Immunohistochemical staining for EXT1 and EXT2 was performed manually using two different commercially available rabbit anti-human EXT1 and EXT2 antibodies. A total of 16 patients with HMO from nine unrelated families were included, with a mean age of 13.9 years. A total of 75% (12/16) of the patients were male and (69%) (11/16) had a mild disease (class I). EXT mutation analysis revealed only EXT1 gene mutations in 13 patients. Seven variants were detected, among which three were novel c.1019G>A, p. (Arg340His), c.962+1G>A and c.1469del, p. (Leu490Argfs*9). Of the 16 patients, 3 did not harbor any mutations for either EXT1 or EXT2. Immunohistochemical examination revealed decreased expression of EXT1 protein in all patients with EXT1 mutation. Surprisingly, EXT2 protein was not detected in these patients, although none had EXT2 mutations. The majority of Jordanian patients with HMO, who may represent an ethnic group that is infrequently investigated, were males and had a mild clinical disease course; whereas most patients with EXT1 gene mutations were not necessarily associated with a severe clinical disease course. The role of EXT2 gene remains a subject of debate, since patients with EXT1 mutations alone did not express the non-mutated EXT2 gene.The standard care for patients with locally advanced cervical cancer is concurrent chemoradiotherapy. Successful neoadjuvant chemotherapy (NAC) can reduce tumor size and enable patients to be eligible for a hysterectomy, which can improve their prognosis. Selecting the right candidate for NAC is important since NAC failure results in switching to radiation therapy and can lead to a worse prognosis due to a delay in the initiation of the core therapy. Therefore, the identification of biomarkers that can predict the effect of NAC is essential. Previous reports have suggested a relationship between protein arginine methyltransferase (PRMT1) and chemoresistance in several types of cancer. PRMT1 has been demonstrated to methylate apoptosis signal-regulated kinase 1 and to inhibit its activity, thereby contributing to chemoresistance. The present study investigated the association between PRMT1 expression and the efficacy of NAC in locally advanced cervical cancer. Data from 53 patients with locally advanced uterinments in the prognosis of these patients.Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR-induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. It exists as a monomer of 25 kDa, a homodimer of 45 kDa or a heterodimer of 135 kDa (disulfide bound to latent matrix metalloproteinase-9). NGAL is considered the biochemical gold standard for the early diagnosis of acute kidney injury and has attracted much attention as a diagnostic biomarker. NGAL has controversial (i.e. both beneficial and detrimental) effects on cellular processes associated with tumor development, such as cell proliferation, survival, migration, invasion and drug resistance. Therefore, the present review aimed at clarifying the role of NGAL in renal cell carcinoma (RCC). Relevant studies of NGAL and RCC were searched in PubMed and relevant information about the structure, expression, function and mechanism of NGAL in RCC were summarized. Finally, the following conclusions could be drawn from the literature i) NGAL can be detected in cancer tissues, serum and urine of patients with RCC; ii) NGAL is not a suitable diagnostic marker for early screening of RCC; iii) NGAL expression may be used to predict the prognosis of patients with RCC; and iv) Further research on NGAL may be helpful to decrease sunitinib resistance and find new treatment strategies for RCC.Substantial evidence suggests that cancer stem cells (CSCs) are the main cause of the initiation, progression and recurrence of tumors. Benzidine has been identified as a risk factor for bladder cancer. The aim of the present study was to investigate the effects of benzidine on bladder CSCs (BCSCs) and the possible mechanism underlying its action. 2,3-Butanedione-2-monoxime The bladder cancer cell lines UM-UC-3 and EJ were maintained in serum-free medium and cells forming three-dimensional spheres were characterized as BCSCs. The sphere-forming cells were exposed to different concentrations of benzidine and vismodegib, and western blotting was performed to evaluate the expression of markers associated with CSCs and the Sonic hedgehog (SHH) signaling pathway. Flow cytometry was used to detect the distribution of cells in different phases of the cell cycle, and immunofluorescence staining was used to detect the protein expression of CD44. The results revealed that the levels of BCSC markers, namely CD133, CD44, aldehyde dehydrogenase 1-A1, Nanog and octamer-binding transcription factor-4, in the cell spheres were markedly elevated compared with those in cells cultured in serum-supplemented medium. Furthermore, benzidine increased the expression of BCSC markers and promoted the sphere-forming ability of the cells. In addition, it was observed that benzidine activated the SHH pathway, while inhibition of the Shh pathway using vismodegib diminished the promoting effects of benzidine on BCSCs. The findings of the present study indicate that benzidine promoted the stemness of BCSCs via activation of the SHH pathway, which may support further exploration of the molecular basis of the association between benzidine exposure and bladder oncogenesis.Colorectal cancer (CRC) is the third most commonly diagnosed malignancy that is associated with high levels of mortality. link2 CRCs are often associated with an aberrant wingless-type mouse mammary tumor virus integration site family (Wnt) signaling pathway known to be responsible for tumorigenesis and cancer progression. link3 Other factors that contribute to CRC pathology include hypoxia, extracellular matrix and cellular microenvironment. In the present study, modulation of Wnt, a common molecular progenitor for CRC-associated pathology was evaluated. CRC tissues and specific cell lines were found to exhibit increased expression levels of prolyl 4-hydroxylase subunit α1 (P4HA1). P4HA1 expression was found to stabilize hypoxia inducible factor-1α (HIF1α). The silencing of P4HA1 resulted in decreased cell proliferation, cell cycle arrest in the G1 phase, decreased tumorsphere formation, decreased tumorsphere volume, increased susceptibility to 5-fluorouracil and increased caspase-3 activity. However, P4HA1 silencing resulted in the activation and thus proteasomal degradation of β-catenin, indicative of the abrogation of Wnt signaling pathway. Wnt is a critical signaling pathway and is activated in most CRCs. HIF1α is a poor prognostic marker in CRC. The present study provided preliminary evidence that HIF1α and the Wnt signaling pathway in CRC are modulated through P4HA1. P4HA1 may serve not just as a biomarker for CRC prognosis but may also be targeted for potential therapeutic intervention.Although accumulating evidence has confirmed the potential biological functions of long non-coding RNAs (lncRNAs) as competitive endogenous RNAs (ceRNAs) in colorectal tumorigenesis and progression, few studies have focused on rectosigmoid junction cancer. In the present study, a comprehensive analysis was conducted to explore lncRNA-mediated ceRNA implications and their potential value for prognosis. lncRNA, microRNA (miR/miRNA) and mRNA expression profiles were downloaded from The Cancer Genome Atlas database. Subsequently, a lncRNA-miRNA-mRNA regulatory network was constructed to evaluate the functions of these differentially expressed genes on overall survival (OS) for rectosigmoid junction cancer. As a result, a rectosigmoid junction cancer-specific ceRNA network was successfully constructed with 7 differentially expressed (DE)lncRNAs, 16 DEmiRNAs and 71 DEmRNAs. Among the network, one DElncRNA (small nucleolar RNA host gene 20) and three mRNAs (sodium- and chloride-dependent taurine transporter, fibroblast growth factor 13 and tubulin polyglutamylase TTLL7) were significantly associated with OS (P less then 0.05). Additionally, two lncRNAs (KCNQ1OT1 and MIR17HG) interacted with most of the DEmiRNAs. Notably, two top-ranked miRNAs (hsa-miR-374a-5p and hsa-miR-374b-5p) associated networks were identified to be markedly associated with the pathogenesis. Furthermore, four DEmRNAs (caveolin-1, MET, filamin-A and AKT3) were enriched in the Kyoto Encylopedia of Gene and Genomes pathway analysis, as well as being included in the ceRNA network. In summary, the present results revealed that a specific lncRNA-miRNA-mRNA network was associated with rectosigmoid junction cancer, providing several molecules that may be used as novel prognostic biomarkers and therapeutic targets.Fusobacterium nucleatum (Fn) is considered a promoting factor in colorectal cancer (CRC); however, only a few studies have investigated therapies against Fn. L-fucose is a natural monosaccharide that has prebiotic potential. The present study aimed to investigate the effect of L-fucose on the carcinogenic properties of Fn. The HCT116 and SW480 colon cancer cell lines were treated with Fn and Fn+L-fucose (Fnf), respectively. The Cell Counting Kit-8 (CCK-8), colony formation, Transwell migration and invasion and wound healing assays were performed to assess the proliferative, migratory and invasive abilities of the cells, respectively. Western blot was performed to detect the protein levels of jak/stat3 pathway components and EMT. The results of the CCK-8, colony formation, Transwell and wound healing assays demonstrated that treatment with Fn significantly enhanced the proliferative, migratory and invasive abilities of HCT116 and SW480 colon cancer cells. Notably, these effects were significantly reversed following addition of L-fucose.

Autoři článku: Smedegaardpost0598 (Joensen Haynes)