Steensenholbrook4912

Z Iurium Wiki

Verze z 1. 10. 2024, 16:23, kterou vytvořil Steensenholbrook4912 (diskuse | příspěvky) (Založena nová stránka s textem „student.<br /><br />When comparing a traditional clinical experience in an interprofessional student-run clinic vs. previous simulated learning clinical en…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

student.

When comparing a traditional clinical experience in an interprofessional student-run clinic vs. previous simulated learning clinical environment, physician assistant, pharmacy, and medical students qualitatively and quantitatively perceive their learning needs are greater met in the volunteer student-run clinic for communication, holism, and the teaching-learning dyad. There were variations in preferences based on sex and discipline of the student.We present a compressed sensing (CS) algorithm and sampling strategy for reconstructing 3-D Optical Coherence Tomography (OCT) image volumes from as little as 10% of the original data. Reconstruction using the proposed method, Denoising Predictive Coding (DN-PC), is demonstrated for five clinically relevant tissue types including human heart, retina, uterus, breast, and bovine ligament. DN-PC reconstructs the difference between adjacent b-scans in a volume and iteratively applies Gaussian filtering to improve image sparsity. An a-line sampling strategy was developed that can be easily implemented in existing Spectral-Domain OCT systems and reduce scan time by up to 90%.Phase-derived parameters and time autocorrelation functions were used to analyze the behavior of murine B16 cells exposed to different amplitudes of electroporation pulses. check details Cells were observed using an off-axis digital holographic microscope equipped with a fast camera. Series of quantitative phase images of cells were reconstructed and further processed using MATLAB codes. Projected area, dry mass density, and entropy proved to be predictors for permeabilized cells that swell or collapse. Autocorrelation functions of phase fluctuations in different regions of the cell showed a good correlation with the local effectiveness of permeabilization.Recent advancements in the high-speed long-range optical coherence tomography (OCT) endoscopy allow characterization of tissue compliance in the upper airway, an indicator of collapsibility. However, the resolution and accuracy of localized tissue compliance measurement are currently limited by the lack of a reliable nonuniform rotational distortion (NURD) correction method. In this study, we developed a robust 2-step NURD correction algorithm that can be applied to the dynamic OCT images obtained during the compliance measurement. We demonstrated the utility of the NURD correction algorithm by characterizing the local compliance of nasopharynx from an awake human subject for the first time.Two-photon fluorescence microscopy is a nonlinear imaging modality frequently used in deep-tissue imaging applications. A tunable-wavelength multicolor short-pulse source is usually required to excite fluorophores with a wide range of excitation wavelengths. This need is most typically met by solid-state lasers, which are bulky, expensive, and complicated systems. Here, we demonstrate a compact, robust fiber system that generates naturally synchronized femtosecond pulses at 1050 nm and 1200 nm by using a combination of gain-managed and Raman amplification. We image the brain of a mouse and view the blood vessels, neurons, and other cell-like structures using simultaneous degenerate and nondegenerate excitation.Photoacoustic imaging (PAI) is a novel hybrid imaging technique that combines the advantages of optical and ultrasound imaging to produce hyperspectral images of the tissue. The feasibility of measuring oxygen saturation (sO2) with PAI has been demonstrated pre-clinically, but has limited use in humans under conditions of ischemia and reperfusion. As an important step towards making PAI clinically available, we present a study in which PAI was used to estimate the spatial distribution of sO2 in vivo during and after occlusion of the finger of eight healthy volunteers. The results were compared with a commercial oxygen saturation monitor based on diffuse reflectance spectroscopy. We here describe the capability of PAI to provide spatially resolved picture of the evolution of sO2 during ischemia following vascular occlusion of a finger, demonstrating the clinical viability of PAI as a non-invasive diagnostic tool for diseases indicated by impaired microvascularization.In-line X-ray phase-contrast computed tomography (IL-PCCT) can produce high-contrast and high-resolution images of biological samples, and it has a great advantage with regard to imaging the microstructures and morphologies of fibrous biological tissues (FBTs). Filtered back projection (FBP) is widely used in ILPCCT. However, it requires long scanning times and high radiation doses to produce high-quality CT images, and this restricts its applicability in biomedical and preclinical studies on FBTs. To solve this problem, a novel IL-PCCT reconstruction algorithm is proposed to decrease the radiation dose by reducing the number of projections and reconstruct high-quality CT images of FBTs. The proposed algorithm incorporates the FBP method into the iterative reconstruction framework. Considering the area types and anisotropic edge properties of FBTs, a discriminant adaptive-weighted total variation model is introduced to optimize the intermediate reconstructed images. A fibrous phantom simulation and real experiment were performed to assess the performance of the proposed algorithm. Simulation and experimental results demonstrated that the proposed algorithm is an effective IL-PCCT reconstruction method for FBTs with incomplete projection data, and it has a great ability to suppress artifacts and preserve the edges of fibrous structures.Polarization imaging is a powerful tool, which can be applied in biomedical diagnosis and many research fields. Here, we propose a new application of the indices of polarimetric purity (IPPs) composed of P1, P2, P3, to describe the glucose concentrations (GC) changes in the scattering system. The results suggest that P1 of the IPPs is a better indicator to GC in the solution than the degree of polarization (DoP) for the forward scattering detection. Meanwhile, the fitting relation among radius of scattering particle, GCs and P1 parameter has also been calculated, in which the error of inversion is no more than 4.73%. In the backscattering detection, the fitted frequency statistical histogram of the IPPs is used to measure the GCs, and their modes can represent changing trend of GCs.This ex vivo study was conducted to assess the potential of using a fibre optic probe system based on autofluorescence and diffuse reflectance for tissue differentiation in the brain. A total of 180 optical measurements were acquired from 28 brain specimens (five patients) with eight excitation and emission wavelengths spanning from 300 to 700 nm. Partial least square-linear discriminant analysis (PLS-LDA) was used for tissue discrimination. Leave-one-out cross validation (LOOCV) was then used to evaluate the performance of the classification model. Grey matter was differentiated from tumour tissue with sensitivity of 89.3% and specificity of 92.5%. The variable importance in projection (VIP) derived from the PLS regression was applied to wavelengths selection, and identified the biochemical sources of the detected signals. The initial results of the study were promising and point the way towards a cost-effective, miniaturized hand-held probe for real time and label-free surgical guidance.In this study, we developed a novel phase-stabilized complex-decorrelation (PSCD) optical coherence tomography (OCT) angiography (OCTA) method that can generate high quality OCTA images. This method has been validated using three different types of OCT systems and compared with conventional complex- and amplitude-based OCTA algorithms. Our results suggest that in combination with a pre-processing phase stabilization method, the PSCD method is insensitive to bulk motion phase shifts, less dependent on OCT reflectance than conventional complex methods and demonstrates extended dynamic range of flow signal, in contrast to other two methods.Percutaneous renal access is the critical initial step in many medical settings. In order to obtain the best surgical outcome with minimum patient morbidity, an improved method for access to the renal calyx is needed. In our study, we built a forward-view optical coherence tomography (OCT) endoscopic system for percutaneous nephrostomy (PCN) guidance. Porcine kidneys were imaged in our experiment to demonstrate the feasibility of the imaging system. Three tissue types of porcine kidneys (renal cortex, medulla, and calyx) can be clearly distinguished due to the morphological and tissue differences from the OCT endoscopic images. To further improve the guidance efficacy and reduce the learning burden of the clinical doctors, a deep-learning-based computer aided diagnosis platform was developed to automatically classify the OCT images by the renal tissue types. Convolutional neural networks (CNN) were developed with labeled OCT images based on the ResNet34, MobileNetv2 and ResNet50 architectures. Nested cross-validation and testing was used to benchmark the classification performance with uncertainty quantification over 10 kidneys, which demonstrated robust performance over substantial biological variability among kidneys. ResNet50-based CNN models achieved an average classification accuracy of 82.6%±3.0%. The classification precisions were 79%±4% for cortex, 85%±6% for medulla, and 91%±5% for calyx and the classification recalls were 68%±11% for cortex, 91%±4% for medulla, and 89%±3% for calyx. Interpretation of the CNN predictions showed the discriminative characteristics in the OCT images of the three renal tissue types. The results validated the technical feasibility of using this novel imaging platform to automatically recognize the images of renal tissue structures ahead of the PCN needle in PCN surgery.Swept source optical coherence tomography (SS-OCT) enables volumetric imaging of subsurface structure. However, applications requiring wide fields of view (FOV), rapid imaging, and higher resolutions have been challenging because multi-MHz axial scan (A-scan) rates are needed. We describe a microelectromechanical systems vertical cavity surface-emitting laser (MEMS-VCSEL) SS-OCT technology for A-scan rates of 2.4 and 3.0 MHz. Sweep to sweep calibration and resampling are performed using dual channel acquisition of the OCT signal and a Mach Zehnder interferometer signal, overcoming inherent optical clock limitations and enabling higher performance. We demonstrate ultrahigh speed structural SS-OCT and OCT angiography (OCTA) imaging of the swine gastrointestinal tract using a suite of miniaturized brushless motor probes, including a 3.2 mm diameter micromotor OCT catheter, a 12 mm diameter tethered OCT capsule, and a 12 mm diameter widefield OCTA probe. MEMS-VCSELs promise to enable ultrahigh speed SS-OCT with a scalable, low cost, and manufacturable technology, suitable for a diverse range of imaging applications.Optical sectioning has been widely employed for inhibiting out-of-focus backgrounds in three-dimensional (3D) imaging of biological samples. However, point scanning imaging or multiple acquisitions for wide-field optical sectioning in epi-illumination microscopy remains time-consuming for large-scale imaging. In this paper, we propose a single-scan optical sectioning method based on the hybrid illumination (HiLo) algorithm with a line-illumination strategy. Our method combines HiLo background inhibition with confocal slit detection. It thereby offers a higher optical sectioning capability than wide-field HiLo and line-confocal imaging without extra modulation and multiple data acquisition. To demonstrate the optical-sectioning capability of our system, we imaged a thin fluorescent plane and different fluorescence-labeled mouse tissue. Our method shows an excellent background inhibition in thick tissue and thus potentially provides an alternative tool for 3D imaging of large-scale biological tissue.

Autoři článku: Steensenholbrook4912 (Kern Hines)