Wallsdickinson5176
The broad antifungal spectrum of this candidate advocates further exploration of its biocontrol potential in managing fungal infections in different food and feed systems.
The online version contains supplementary material available at 10.1007/s12088-020-00917-z.
The online version contains supplementary material available at 10.1007/s12088-020-00917-z.Bacillus cereus is a foodborne pathogen and cause a frequent problem due to the biofilms forming in equipment of food production plants. Autoinducer-2 (AI-2) involved in interspecies communication, plays a role in the biofilm formation of B. cereus. In this study, biofilm formation by thirty-nine B. cereus strains isolated from foods produced in Korea was determined. To investigate the effect of AI-2 on biofilm formation by B. cereus SBC27, which had the highest biofilm-forming ability, biofilm densities formed after addition of the AI-2 from Staphylococcus aureus and Escherichia coli were analysed. As a result, it was found that the quorum sensing molecule AI-2 could induce biofilm formation by B. cereus within 24 h, but it may also inhibit biofilm formation when more AI-2 is added after 24 h. Thus, these results improve our understanding of biofilm formation by food-derived B. cereus and provide clues that could help to reduce the impact of biofilms, the biggest problem in food processing environments, which has an impact on public health as well as the economy.
Phenotyping based on conventional microbiological, physiological, and molecular analysis by using ARDRA technique was developed with the aim to assess the pathogenic microbial load associated with different stages of the periodontal disease. In addition, in the face of the global issue of antimicrobial resistance, the isolated bacterial strains were evaluated for their antibiotic susceptibility profile. The pathogenic bacterial community was predominantly of Gram-negative strains (66.66%). The most common species were
sp.,
sp.,
and
sp. However, except for the healthy control group,
spp. was isolated from all stages of periodontitis. Multidrug resistance to beta-lactam antibiotics was observed for
sp. and
. Here, we verify a statistically significant relationship between periodontitis stages and the diversity of the bacterial community. Patients with periodontitis showed a more diverse and numerous bacterial community compared to healthy patients. In this sense, we reinforce that biofilms that harbour multidrug-resistant bacteria are a major concern in relation to restoring patient health. Thus, prophylactic measures for maintaining oral health are still the best option for reduce the risk of disease.
In the present study, Rhus vernicifera laccase (RvLac) was immobilized through covalent methods on the magnetic nanoparticles. Fe2O3 and Fe3O4 nanoparticles activated by 3-aminopropyltriethoxysilane followed with glutaraldehyde showed maximum immobilization yields and relative activity up to 81.4 and 84.3% at optimum incubation and pH of 18 h and 5.8, respectively. The maximum RvLac loading of 156 mg/g of support was recorded on Fe2O3 nanoparticles. A higher optimum pH and temperature of 4.0 and 45 °C were noted for immobilized enzyme compared to values of 3.5 and 40 °C for free form, respectively. Immobilized RvLac exhibited better relative activity profiles at various pH and temperature ranges. The immobilized enzyme showed up to 16-fold improvement in the thermal stability, when incubated at 60 °C, and retained up to 82.9% of residual activity after ten cycles of reuses. Immobilized RvLac exhibited up to 1.9-fold higher bisphenol A degradation efficiency potential over free enzyme. Previous reports have demonstrated the immobilization of RvLac on non-magnetic supports. This study has demonstrated that immobilization of RvLac on magnetic nanoparticles is very efficient especially for achieving high loading, better pH and temperature profiles, and thermal- and solvents-stability, high reusability, and higher degradation of bisphenol A.Rapidly evolving sequencing technologies have enabled efficient sequencing of complex genomes and metagenomes. Here, we have presented our metagenomic analysis of rat faeces isolated DNA, sequenced using long-read sequencing technology. The microbiome changes in the rat faeces after sixteen weeks of prolonged administration of subcutaneous 1,2 dimethylhydrazine to induce colon carcinogenesis and oral carotenoid-rich whole-cell lyophilised Dunaliella salina supplement. The faecal pellets were aseptically collected, and DNA was isolated and sequenced subsequently. The post-sequencing analysis revealed that the rat gut microbiome is highly complex and diverse. There was a significant difference between the microbiome of rats that received Dunaliella salina supplement in comparison with rats treated with 1,2 dimethylhydrazine and control rats. We observed the dominance of Bacteroidetes over Firmicutes in both cases of administration. The dominance was notably contributed by individuals like B. vulgatus, B. dorei, B. fragilis, P. ruminicola, and P. copri. The presence of protozoans like Trypanosoma, Trichomonas, and Leishmania was also identified among other commensal eukaryotes. Moreover, there was an abundant presence of bacteriophages targeting probiotic organisms like Lactobacillus among the identified DNA viruses.In sectors like healthcare and hospitality, it has been realized that fabrics play a pivotal role in transfer of nosocomial infections. However, there is a major gap in drawing correlation between different fibre types and their interaction with microorganisms. Such information is important to formulate guidelines for textile materials for use in these sectors. In the current study, the adherence of four important bacteria, Staphylococcus aureus, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa was studied on six different fibre types namely polyester, wool, polypropylene, viscose, silk and cotton. Among these fibres, viscose showed maximum adherence while silk fibres showed the least attachment of bacterial strains. Bacterial adhesion was correlated with the surface characteristics (surface charge, hydrophobicity etc.) of bacteria, and nanoroughness of fibres. Adhesion of these bacteria was tested on five hydrocarbons of different hydrophobicities. ERK inhibitor E. coli, the weakest biofilm producer, and with the highest surface energy and lowest hydrophobicity amongst the bacteria compared in the study, had the lowest load on all fibres.