Berryoneal5037
Although numerous materials have been explored as bone scaffolds, many of them are limited by their low osteoconductivity and a high biodegradability. Therefore, new materials are desired to induce bone cell proliferation and facilitate the bone formation. Attapulgite (ATP) is a hydrated silicate that exists in nature as a fibrillar clay mineral and is well known for its large specific surface area, high viscosity, and high absorption capacity, therefore has the potential to be a new type of bone repair material due to its unique physicochemical properties. In this study, composite scaffolds composed of collagen/polycaprolactone/attapulgite (CPA) or collagen/polycaprolactone (CP) were fabricated through a salt-leaching method. The morphology, composition, microstructure, physical and mechanical characteristics of the CPA and CP scaffolds were assessed. Cells from the mouse multipotent mesenchymal precursor cell line (D1 cells) were cocultured with the scaffolds, and cell adhesion, proliferation, and gene expression on the CPA and CP scaffolds were analyzed. Adult rabbits with radius defects were used to evaluate the performance of these scaffolds in repairing the bone defects over 4 to 12 weeks. The experimental results showed that the cells demonstrated excellent attachment ability on the CPA scaffolds, as well as remarkable upregulation of the levels of osteoblastic markers such as Runx2, Osterix, collagen 1, osteopontin, and osteocalcin. Furthermore, results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPA scaffolds. Ultimately, these results demonstrated that CPA composite scaffolds have excellent capability in bone tissue engineering applications and have the potential to be used as effective bone regeneration and repair scaffolds in clinical applications. Creative Commons Attribution license.BACKGROUND To investigate the clinicopathologic characteristics and survival outcomes of patients with thymic epithelial tumors (TET) according to age at diagnosis. RESULTS A total of 4431 patients were analyzed. Gender, race, tumor histology and surgery were similar between different age groups. The 0-18 group was associated with a higher risk of distant metastasis. Compared to patients aged above 80, the hazard ratios (HR) for patients aged 0-18, 19-30, 31-40, 41-50, 51-60, 61-70, 71-80 were 1.079, 0.739, 0.614, 0.621, 0.633, 0.673, 0.861, respectively. From the subgroup analysis for the adult patients who were above 19 years old, we found that the 19-70 group had significant better cancer specific survival (CSS) and overall survival (OS) than the above 70 group. CONCLUSIONS Age is a strong independent prognostic factor for survival in TET. Pediatric TET has a higher risk of distant metastasis and an inferior CSS. For the adults who were above 19, patients older than 70-year-old were associated with a shorter CSS. METHODS Information of 4431 TET patients was retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. selleckchem Demographic features, clinicopathologic characteristics and survival outcomes were compared between patients diagnosed at different age groups (0-18, 19-30, 31-40, 41-50, 51-60, 61-70, 71-80, above 80).Alzheimer's disease (AD) has become a major world health problem as the population ages. There is still no available treatment that can stop or reverse the progression of AD. Human amnion epithelial cells (hAECs), an alternative source for stem cells, have shown neuroprotective and neurorestorative potentials when transplanted in vivo. Besides, studies have suggested that stem cell priming with plant-derived bioactive compounds can enhance stem cell proliferation and differentiation and improve the disease-treating capability of stem cells. Verbenalin is an iridoid glucoside found in medicinal herbs of Verbenaceae family. In the present study, we have conducted microarray gene expression profiling of verbenalin-treated hAECs to explore its therapeutic potential for AD. Gene set enrichment analysis revealed verbenalin treatment significantly enriched AD-associated gene sets. Genes associated with lysosomal dysfunction, pathologic angiogenesis, pathologic protein aggregation, circadian rhythm, age-related neurometabolism, and neurogenesis were differentially expressed in the verbenalin-treated hAECs compared to control cells. Additionally, the neuroprotective effect of verbenalin was confirmed against amyloid beta-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Our present study is the first to report the therapeutic potential of verbenalin for AD; however, further in-depth research in the in vitro and in vivo models are required to confirm our preliminary findings.Improving the quality and the developmental competence of in vitro produced (IVP) embryos is an indispensable goal for assisted reproductive technology. Autophagy is a major protective mechanism for intracellular degradation of unnecessary cytoplasmic components. Autophagy ends by the fusion between autophagic vacuoles and lysosomes, allowing the degradation of the cargo by lysosomal enzymes, especially the cathepsins (CTSs). However, it is still unclear how autophagy and cathepsin K (CTSK) relate to embryo development. This study evaluated 1) the activities of autophagy and CTSK in relation to bovine embryo quality and 2) the effect of autophagy induction and/or CTSK inhibition on preimplantation embryo development and quality. We show here that good-quality embryos exhibited a greater autophagic activity and less CTSK activity compared to poor-quality embryos. Blastomeres of an individual embryo may vary in their quality. Good quality blastomeres showed an increased autophagic activity and decreased CTSK activity compared to poor-quality blastomeres within the same embryo at different developmental stages. Importantly, induction of autophagy and/or inhibition of CTSK improved the developmental rate (increased blastocyst and hatching rates) and the quality (increased total cell number and decreased the percentage of apoptotic cells) of IVP bovine embryos. These results demonstrate a promising approach to selectively isolate good-quality embryos and improve the efficiency of IVEP of cattle embryos.