Mcleanodom7731

Z Iurium Wiki

Verze z 30. 9. 2024, 22:49, kterou vytvořil Mcleanodom7731 (diskuse | příspěvky) (Založena nová stránka s textem „Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.

Treatment strategies inhibiting BRAF in combination with EGFR have been developed in patients with BRAF

mutant metastatic colorectal cancer, but intrinsic and secondary resistance remains a challenge. We aimed to investigate which genetic alterations cause intrinsic non-response and/or acquired resistance in these patients receiving therapies consisting of a backbone of BRAF and EGFR inhibition.

This was a cohort study on genetic alterations in patients with BRAF

mutant advanced colorectal cancer treated with inhibitors of the MAPK pathway. MEK162 We examined tumour tissue for genetic alterations at baseline, during treatment and at progression.

In total, 37 patients were included in this cohort. Genetic alterations in EGFR and in PIK3CA are associated with non-response. A greater fraction of non-responders (75%) versus responders (46%) had at least one genetic alteration in other genes than TP53, APC or BRAF. Secondary resistance mutations (n = 16 patients) were observed most frequently in the PI3K pathway (n = 6) and in receptor tyrosine kinases (n = 4), leading to increased upstream signalling.

Genetic alterations in the PI3K and upstream receptor tyrosine kinases were mostly associated with intrinsic and acquired resistance. By understanding these alterations, simultaneous or alternating treatments with targeted inhibitors might improve response duration.

Genetic alterations in the PI3K and upstream receptor tyrosine kinases were mostly associated with intrinsic and acquired resistance. By understanding these alterations, simultaneous or alternating treatments with targeted inhibitors might improve response duration.

Recently, fusion variants of the breast cancer anti-oestrogen-resistance 4 (BCAR4) gene were recurrently discovered in lung adenocarcinoma from the genome-wide studies. However, the functional characterisation of BCAR4 fusion has not been investigated.

Based on the analysis of RNA-sequencing data, we identified a fusion transcript of CD63-BCAR4 in a Korean patient with lung adenocarcinoma who did not harbour any known activating mutations in EGFR and KRAS genes. To investigate the oncogenic effect of CD63-BCAR4, in vitro and in vivo animal experiments were performed.

In vitro experiments showed strongly enhanced cell migration and proliferation by the exogenous expression of CD63-BCAR4 protein in bronchial epithelial cells. Cell migration was notably reduced after knockdown of BCAR4 fusion by small-interfering RNA. The tumorigenic and metastatic capability of the CD63-BCAR4 fusion was confirmed by using the mouse xenograft model. Fusion-overexpressed cells result in metastasis to the liver and lung as well as the primary tumours after subcutaneous injection into mice. Cyclin D1, MMP1, Slug and mesenchymal markers were significantly increased after CD63-BCAR4 overexpression in the in vitro and in vivo experiments.

Taken together, our results suggest a newly identified fusion gene, CD63-BCAR4 as a potential novel oncogene in lung adenocarcinoma.

Taken together, our results suggest a newly identified fusion gene, CD63-BCAR4 as a potential novel oncogene in lung adenocarcinoma.Metastasis-directed therapy (MDT)-local therapy that is intended to eradicate specific metastatic lesions-has hitherto been used with varying degrees of clinical efficacy and acceptance as a meaningful therapy for metastatic disease. Over the past 25 years, however, the momentum for using MDT to manage patients with metastatic solid tumours has increased, driven by several factors. Among these factors is the recognition that patients with limited metastatic burden could potentially derive survival benefits from MDT. Furthermore, although current systemic therapies are increasingly effective, they are infrequently curative. In addition, technological advances have broadened the spectrum of metastatic lesions that can be treated with ablative intent. Here we aim to briefly review the status of evidence for the clinical benefit of MDT based on current data mainly from trials in patients with oligometastatic disease, discuss the myriad of clinical states that might fall under and beyond the definition of oligometastasis, review technological advances in MDT and their applications beyond oligometastasis, and discuss the need for the continued co-evolution of MDT and systemic therapy as we seek to understand which patients with metastatic cancer can achieve durable remission and how to optimally manage those who cannot.Despite the fact that different genetic programmes drive metastasis of solid tumours, the ultimate outcome is the same tumour cells are empowered to pass a series of physical hurdles to escape the primary tumour and disseminate to other organs. Epithelial-to-mesenchymal transition (EMT) has been proposed to drive the detachment of individual cells from primary tumour masses and facilitate the subsequent establishment of metastases in distant organs. However, this concept has been challenged by observations from pathologists and from studies in animal models, in which partial and transient acquisition of mesenchymal traits is seen but tumour cells travel collectively rather than as individuals. In this review, we discuss how crosstalk between a hybrid E/M state and variations in the mechanical aspects of the tumour microenvironment can provide tumour cells with the plasticity required for strategies to navigate surrounding tissues en route to dissemination. Targeting such plasticity provides therapeutic opportunities to combat metastasis.

Autoři článku: Mcleanodom7731 (Lindberg Rouse)