Hollandwelch5673

Z Iurium Wiki

Verze z 30. 9. 2024, 22:48, kterou vytvořil Hollandwelch5673 (diskuse | příspěvky) (Založena nová stránka s textem „overage.Inhibition of phosphodiesterase-4 (PDE4) produces robust anti-inflammatory and antidepressant-like effects in multiple animal models. However, the…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

overage.Inhibition of phosphodiesterase-4 (PDE4) produces robust anti-inflammatory and antidepressant-like effects in multiple animal models. However, the detailed mechanisms have not been well studied. Receptor for advanced glycation endproducts (RAGE) and inflammasome activation are implicated in the etiology of depression. Here, we aimed to investigate the involvement of RAGE and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the antidepressant-like effects of PDE4 inhibition in mice. We found that inhibition of PDE4 by roflupram (ROF, 0.5, and 1.0 mg/kg, i.g.) exerted antidepressant-like effects in mice subjected to chronic unpredictable mild stress (CUMS). Simultaneously, ROF inhibited CUMS-induced microglial activation and restored the morphology of microglial cells in the hippocampus, as evidenced by reduced total process length, area, volume, number of branching points, number of terminal points and total sholl intersections of microglia. ROF also decreased the expression of ionized calcium-binding adapter molecule-1 and the level of interleukin-1β. click here Western blot analysis showed that PDE4 inhibition suppressed the high-mobility group box 1 protein (HMGB1)/RAGE signaling pathway, as the levels of HMGB1, RAGE, toll-like receptor 4, phosphorylated p38 mitogen-activated protein kinase, and nuclear factor κ-B were decreased in both hippocampus and cortex in mice after treatment with ROF. Moreover, ROF also attenuated the protein levels of NLRP3, the apoptosis-associated speck-like protein containing (ASC), and cysteine-requiring aspartate protease-1 (Caspase-1), which are key proteins in the NLRP3-mediated inflammasome signaling pathway. In summary, these results demonstrate that the down-regulation of HMGB1/RAGE signaling pathway and inflammasome suppression possibly contribute to the antidepressant-like effects of PDE4 inhibitors. And, ROF has potential as a candidate drug in the treatment of depression.Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.Inflammatory processes are implicated in the aetiology of Major Depressive Disorder (MDD); however, the relationship between peripheral inflammation, brain structure and depression remains unclear, partly due to complexities around the use of acute/phasic inflammatory biomarkers. Here, we report the first large-scale study of both serological and methylomic signatures of CRP (considered to represent acute and chronic measures of inflammation respectively) and their associations with depression status/symptoms, and structural neuroimaging phenotypes (T1 and diffusion MRI) in a large community-based sample (Generation Scotland; NMDD cases = 271, Ncontrols = 609). Serum CRP was associated with overall MDD severity, and specifically with current somatic symptoms- general interest (β = 0.145, PFDR = 6 × 10-4) and energy levels (β = 0.101, PFDR = 0.027), along with reduced entorhinal cortex thickness (β = -0.095, PFDR = 0.037). DNAm CRP was significantly associated with reduced global grey matter/cortical volume and widespread reductions in integrity of 16/24 white matter tracts (with greatest regional effects in the external and internal capsules, βFA= -0.12 to -0.14). In general, the methylation-based measures showed stronger associations with imaging metrics than serum-based CRP measures (βaverage = -0.15 versus βaverage = 0.01 respectively). These findings provide evidence for central effects of peripheral inflammation from both serological and epigenetic markers of inflammation, including in brain regions previously implicated in depression. This suggests that these imaging measures may be involved in the relationship between peripheral inflammation and somatic/depressive symptoms. Notably, greater effects on brain morphology were seen for methylation-based rather than serum-based measures of inflammation, indicating the importance of such measures for future studies.Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CX3CR1creER/+R26LSL-hM4Di/+ transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1β). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT.

Autoři článku: Hollandwelch5673 (Osborn Nymand)