Piperblevins2796

Z Iurium Wiki

Verze z 30. 9. 2024, 22:44, kterou vytvořil Piperblevins2796 (diskuse | příspěvky) (Založena nová stránka s textem „Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We in…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed "YAS" framework growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), β -glucosidase (BG), β -xylosidase (BX), and N-acetyl- β - D -glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland.Biofilms are typically studied in bacterial media that allow the study of important properties such as bacterial growth. However, the results obtained in such media cannot take into account the bacterial localization/clustering caused by bacteria-protein interactions in vivo and the accompanying alterations in phenotype, virulence factor production, and ultimately antibiotic tolerance. We and others have reported that methicillin-resistant or methicillin-susceptible Staphylococcus aureus (MRSA or MSSA, respectively) and other pathogens assemble a proteinaceous matrix in synovial fluid. This proteinaceous bacterial aggregate is coated by a polysaccharide matrix as is characteristic of biofilms. In this study, we identify proteins important for this aggregation and determine the concentration ranges of these proteins that can reproduce bacterial aggregation. We then test this protein combination for its ability to cause marked aggregation, antibacterial tolerance, preservation of morphology, and expression of the phenol-soluble modulin (PSM) virulence factors. In the process, we create a viscous fluid that models bacterial behavior in synovial fluid. We suggest that our findings and, by extension, use of this fluid can help to better model bacterial behavior of new antimicrobial therapies, as well as serve as a starting point to study host protein-bacteria interactions characteristic of physiological fluids.Resistance caused by the formation of the Candida albicans (C. albicans) biofilm is one of the main reasons for antifungal therapy failure. Thus, it is important to find indicators that predict C. albicans biofilm formation to provide evidence for the early prevention and treatment of the C. albicans biofilms. In this study, C. albicans samples were selected from C. albicans septicemia that were sensitive to common antifungal agents. It was found that the agglutinin-like sequence 3 (ALS3) gene was differentially expressed in free, antifungal, drug-sensitive C. albicans. The average ALS3 gene expression was higher in the C. albicans strains with biofilm formation than that in the C. albicans strains without biofilm formation. Then, it was further confirmed that the rate of biofilm formation was higher in the high ALS3 gene expression group than that in the low ALS3 gene expression group. selleck products It was found that C. albicans with biofilm formation was more resistant to fluconazole, voriconazole, and itraconazole. However, it maintained its sensitivity to caspofungin and micafungin in vitro and in mice. Further experiments regarding the prevention of C. albicans biofilm formation were performed in mice, in which only caspofungin and micafungin prevented C. albicans biofilm formation. These results suggest that the expression level of ALS3 in C. albicans may be used as an indicator to determine whether C. albicans will form biofilms. The results also show that the biofilm formation of C. albicans remained sensitive to caspofungin and micafungin, which may help to guide the selection of clinical antifungal agents for prevention and therapy.Recurrent vulvovaginal candidiasis (RVVC) is one of the most prevalent fungal infections in humans, especially in developing countries; however, it is underestimated and regarded as an easy-to-treat condition. RVVC may be caused by dysbiosis of the microbiome and other host-, pathogen-, and antifungal drug-related factors. Although multiple studies on host-related factors affecting the outcome have been conducted, such studies on Candida-derived factors and their association with RVVC are lacking. Thus, fluconazole-tolerant (FLZT) isolates may cause fluconazole therapeutic failure (FTF), but this concept has not been assessed in the context of Candida-associated vaginitis. Iran is among the countries with the highest burden of RVVC; however, comprehensive studies detailing the clinical and microbiological features of this complication are scarce. Therefore, we conducted a 1-year prospective study with the aim to determine the RVVC burden among women referred to a gynecology hospital in Tehran, the association FTF. Therefore, the widespread use of OTC azoles can influence fluconazole therapeutic success, highlighting the necessity of controlling the use of weak topical antifungals among Iranian women.Reactive oxygen species (ROS) are related to antibiotic resistance and have been reported in bacteria. However, whether ROS contribute to ceftazidime resistance and plays a role in ceftazidime-mediated killing is unknown. The present study showed lower ROS production in ceftazidime-resistant Edwardsiella tarda (LTB4-R CAZ ) than that in LTB4-sensitive E. tarda (LTB4-S), two isogenic E. tarda LTB4 strains, which was related to bacterial viability in the presence of ceftazidime. Consistently, ROS promoter Fe3+ and inhibitor thiourea elevated and reduced the ceftazidime-mediated killing, respectively. Further investigation indicated that the reduction of ROS is related to inactivation of the pyruvate cycle, which provides sources for ROS biosynthesis, but not superoxide dismutase (SOD) and catalase (CAT), which degrade ROS. Interestingly, Fe3+ promoted the P cycle, increased ROS biosynthesis, and thereby promoted ceftazidime-mediated killing. The Fe3+-induced potentiation is generalizable to cephalosporins and clinically isolated multidrug-resistant pathogens.

Autoři článku: Piperblevins2796 (Bauer Albert)