Holmcoyle1777
A protein network map based on these 14 miRNAs identified the genes involved in skeletal muscle differentiation, among which Notch1, Egr2, and Myocd represented major nodes. The data obtained in this study are potentially useful for the early diagnosis of sarcopenia and for the identification of novel therapeutic targets for the treatment and/or prevention of sarcopenia.Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1β, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination.Precision medicine uses genomic guidance to improve drug treatment safety and efficacy. Prior knowledge of genetic variant impact can enable such strategies, but current knowledge of African variants remains scarce. G6PD variants are linked to haemolytic adverse effects for a number of drugs commonly used in African populations. We have investigated a set of G6PD variants with structural bioinformatics techniques to further characterise variants with known effect, and gain insights into variants with unknown impact. We observed wide variations in patterns of root-mean-square deviation between wild-type and variant structures. Variants with known, highly deleterious impact show structural effects which may likely result in the destabilisation of the G6PD homodimer. The V68M and N126D variants (which are both common across African populations, and together form the A- haplotype) induce large conformational shifts in the catalytic NADP+ binding domain. We observed a greater impact for the haplotype than for each of the individual variants in these cases. A novel African variant (M207T) shows the potential to disrupt interactions within the protein core, urging further investigation. We explore how characterising the molecular impact of African G6PD variants can enable advanced strategies for precision medicine, as well as impact the use of novel therapeutics aiming to treat G6PD deficiency. This knowledge can assist in bridging current knowledge gaps, and aid to facilitate precision medicine applications in African populations.Psoriasis is defined as chronic, immune-mediated disease. Regardless of the development of new therapeutic approaches, the precise etiology of psoriasis remains unknown and speculative. The aim of this review was to systematize the results of previous research on the role of oxidative stress and aberrant immune response in the pathogenesis of psoriasis, as well as the impact of certain therapeutic modalities on the oxidative status in patients with psoriasis. Complex immune pathways of both the innate and adaptive immune systems appear to be major pathomechanisms in the development of psoriasis. Oxidative stress represents another important contributor to the pathophysiology of disease, and the redox imbalance in psoriasis has been reported in skin cells and, systemically, in plasma and blood cells, and more recently, also in saliva. Current immune model of psoriasis begins with activation of immune system in susceptible person by some environmental factor and loss of immune tolerance to psoriasis autoantigens. Increased production of IL-17 appears to be the most prominent role in psoriasis pathogenesis, while IL-23 is recognized as master regulator in psoriasis having a specific role in cross bridging the production of IL-17 by innate and acquired immunity. Other proinflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-6, IL-22, IL-26, IL-29, or IL-36, have also been reported to play important roles in the development of psoriasis. Oxidative stress can promote inflammation through several signaling pathways. The most noticeable and most powerful antioxidative effects exert various biologics compared to more convenient therapeutic modalities, such as methotrexate or phototherapy. The complex interaction of redox, immune, and inflammatory signaling pathways should be focused on further researches tackling the pathophysiology of psoriasis, while antioxidative supplementation could be the solution in some refractory cases of the disease.
This study is aimed at systematically analyzing the expression, function, and prognostic value of six transmembrane epithelial antigen of the prostate 1 (STEAP1) in various cancers.
The expressions of STEAP1 between normal and tumor tissues were analyzed using TCGA and GTEx. Clinicopathologic data was collected from GEPIA and TCGA. Prognostic analysis was conducted by Cox proportional hazard regression and Kaplan-Meier survival. DNA methylation, mutation features, and molecular subtypes of cancers were also investigated. The top-100 coexpressed genes with STEAP1 were involved in functional enrichment analysis. ESTIMATE algorithm was used to analyze the correlation between STEAP1 and immunity value. The relationships of STEAP1 and biomarkers including tumor mutational burden (TMB), microsatellite instability (MSI), and stemness score as well as chemosensitivity were also illustrated.
Among 33 cancers, STEAP1 was overexpressed in 19 cancers such as cervical squamous cell carcinoma and endocervical adenocaor microenvironment, and chemosensitivity.While impairment of vascular homeostasis induced by hypercholesterolemia is the first step of cardiovascular diseases, the molecular mechanism behind such impairment is not well known. Here, we reported that high-cholesterol diet (HCD) induced defective vessel sprouting in zebrafish larvae. Electron transfer flavoprotein subunit α (ETFα) (encoded by the ETFA gene), a protein that mediates transfer of electrons from a series of mitochondrial flavoenzymes to the respiratory chain, was downregulated in HCD-fed zebrafish and in endothelial cells treated with oxidized low-density lipoprotein. Knockdown of ETFα with morpholino antisense oligonucleotides reproduced vascular sprouting defects in zebrafish larvae, while replenishing with exogeneous ETFA mRNA could successfully rescue these defects. ETFA knockdown in endothelial cells reduces cell migration, proliferation, and tube formation in vitro. Finally, knockdown of ETFA in endothelial cells also reduced fatty acid oxidation, oxygen consumption rate, and hypoxia-inducible factor-1α (HIF1α) protein levels. Taken together, we demonstrate that downregulation of ETFα is involved in hypercholesterolemia-induced defective vessel sprouting in zebrafish larvae via inhibition of endothelial proliferation and migration. The molecular mechanism behind this phenomenon is the decrease of HIF1α induced by downregulation of ETFα in endothelial cells. This work suggests that disturbance of ETFα-mediated oxygen homeostasis is one of the mechanisms behind hypercholesterolemia-induced vascular dysfunction.Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of 71.89 ± 0.92 kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the di amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.The current treatment options for glioblastoma (GBM) can result in median survival of 15-16 months only, suggesting the existence of therapy-resistant factors. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an essential role in the development of various brain tumors, including GBM. This study aimed to identify therapy-resistant and therapy-sensitive GBM associated lncRNAs and their role in GBM. We conducted a genome-wide transcriptional survey to explore the lncRNA landscape in 195 GBM brain tissues. Cell proliferation was evaluated by CyQuant assay and Ki67 immunostaining. Expression of MAD2L1 and CCNB2 was analyzed by western blotting. We identified 51 lncRNAs aberrantly expressed in GBM specimens compared with either normal brain samples or epilepsy non-tumor brain samples. Among them, 27 lncRNAs were identified as therapy-resistant lncRNAs that remained dysregulated after both radiotherapy and chemoradiotherapy; while 21 lncRNAs were identified as therapy-sensitive lncRNAs whose expressions were reversed by both radiotherapy and chemoradiotherapy. We further investigated the potential functions of the therapy-resistant and therapy-sensitive lncRNAs and demonstrated their relevance to cell proliferation. We also found that the expressions of several lncRNAs, including SNHG1 and UBL7-AS1, were positively correlated with cell-cycle genes' expressions. Finally, we experimentally confirmed the function of a therapy-resistant lncRNA, SNHG1, and a therapy-sensitive lncRNA, UBL7-AS1, in promoting cell proliferation in GBM U138MG cells. Our in vitro results demonstrated that knockdown of SNHG1 and UBL7-AS1 showed an additive effect in reducing cell proliferation in U138MG cells.
Chiari malformation type 1 (C1M) is a neurological disease characterized by herniation of the cerebellar tonsils below the foramen magnum. Cranial bone constriction is suspected to be its main cause. Selleckchem Rhosin To date, genes related to bone development (e.g.
or
) have been associated with C1M, while some bone diseases (e.g. Paget) have been found to cosegregate with C1M. Nevertheless, the association between bone mineral density (BMD) and C1M has not been investigated, yet. Here, we systematically investigate the association between C1M and BMD, and between bone related genes and C1M.
We have recruited a small cohort of C1M patients (12 unrelated patients) in whom we have performed targeted sequencing of an in-house bone-related gene panel and BMD determination through non-invasive DXA.
In the search for association between the bone related genes and C1M we have found variants in more than one C1M patient in
,
,
and
. These genes have been either associated with craniofacial development in different ways, or previously associated with C1M (
).