Flanaganbaker0440

Z Iurium Wiki

Verze z 30. 9. 2024, 21:36, kterou vytvořil Flanaganbaker0440 (diskuse | příspěvky) (Založena nová stránka s textem „Microbial fuel cell (MFC) sensor exhibits attractive prospects for online monitoring of water toxicity as an early warning device. However, the accumulatio…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Microbial fuel cell (MFC) sensor exhibits attractive prospects for online monitoring of water toxicity as an early warning device. However, the accumulation of dead cells in anode biofilm might decrease the sensing sensitivity of MFC during long term operation. In addition, with repeated exposure to toxins, the microbial community of anode biofilm would also adjust to build up higher endurance to environmental toxicity. In this study, the long term sensing sensitivity of MFC sensor and the microbial community changes were characterized with Pb2+ as the target toxin. The results show that newly formed biofilm with higher live/dead cell ratio exhibited higher sensitivity than mature biofilm. Modification of anodic biofilm via high current stimulation was applied to increase the ratio of live cells, which led to enhanced sensing sensitivity of MFC with mature anode biofilm. However, the enhancement was relatively limited for biofilm that was previously exposed to repeated Pb2+ shocks. Microbial community analysis revealed that the proportions of microbial species possessing higher environmental robustness, such as Hyphomicrobiaceae and Cloacibacillus, significantly increased in the anode biofilm after long term repeated Pb2+ shocks.Toxicokinetics information is key to understanding the underlying intoxication processes, although this is often lacking. Hence, in the present study the toxicokinetics of copper (Cu) and cadmium (Cd) was assessed in the soil invertebrate Enchytraeus crypticus. The animals were exposed in LUFA 2.2 natural soil spiked to the estimated EC20 for reproduction effects in the Enchytraeid Reproduction Test (ERT), i.e. 80 mg Cu/kg soil Dry Weight (DW) and 20 mg Cd/kg soil DW. Tests followed the OECD guideline 317, including a 14-day uptake phase in spiked soil followed by 14 days elimination in clean soil, with samplings at days 0, 1, 2, 4, 7, 10, and 14. Exposure to Cu showed fast uptake, reaching a steady state after approx. 7 days, whereas for Cd, internal concentration increased and did not reach a clear steady state even after 14 days. When transferred to clean soil, Cu was rapidly eliminated returning to initial levels, while Cd-exposed animals still contained increased residue levels after 14 days. These differences in toxicokinetics have consequences for the toxicity and toxicodynamics and are indicative of the way essential and non-essential elements are handled by enchytraeids, likely also other soil invertebrates. This argues for the relevancy of longer exposure testing for elements like Cd compared to Cu, where phenotypical effects can well occur later at non-tested periods, e.g. after the 21 days' duration of the standard ERT using E. crypticus.The growing diverse applications of nanodiamonds (NDs), especially as adsorbents and catalysts for wastewater treatment, have significantly increased their discharge and potential risk towards aquatic ecosystems. Although NDs have been certified for superior biocompatibility and lower toxicity towards numerous human cell lines, the characteristic response and underlying mechanism of aquatic microalgal response remains unclear. Here, the response of Chlorella pyrenoidosa to five concentrations of NDs was thoroughly investigated by comprehensive phenotypic and transcriptional examinations. Results indicated that higher concentration of NDs (50 mg/L) induced 75.4% growth inhibition, exacerbated oxidative stress and malformed morphology of microalgae after 48 h exposure. Meanwhile, the aggregated microalgae formed several flocs, apparently under 50 mg/L NDs. Noticeably, photosynthesis was susceptible to the NDs exposure. Although, the chlorophyll content and genes involved in photosynthesis were significantly improved by NDs, the results obtained from the photochemical parameters indicated that the excessive electrons during photosynthesis might be a pivotal reason for oxidative stress generation. Additionally, the genes included in amino acids metabolism and protein synthesis were up-regulated to alleviate the oxidative stress. Collectively, this work discloses the explicit molecular mechanisms of aquatic microalgae and provides comprehensive insights of potential aqueous environmental risk of gradually emergent NDs.Membranes, as the primary separation element of membrane-based processes, have greatly attracted the attention of researchers in several water treatment applications, including wastewater treatment, water purification, water disinfection, toxic and non-toxic chemical molecules, heavy metals, among others. Today, the removal of heavy metals from water has become challenging, in which chemical engineers are approaching new materials in membrane technologies. Therefore, the current review elucidates the progress of using different concepts of membranes and potential novel materials for such separations, identifying that polymeric membranes can exhibit a removal efficiency from 77 up to 99%; while novel nanocomposite membranes are able to offer complete removal of heavy metals (up to 100%), together with unprecedented permeation rates (from 80 up to 1, 300 L m-2 h-1). Thereby, the review also addresses the highlighted literature survey of using polymeric and nanocomposite membranes for heavy metal removal, highlighting the relevant insights and denoted metal uptake mechanisms. Moreover, it gives up-to-date information related to those novel nanocomposite materials and their contribution to heavy metals separation. Finally, the concluding remarks, future perspectives, and strategies for new researchers in the field are given according to the recent findings of this comprehensive review.Adsorption methods have been widely used in wastewater treatment due to its high removal efficiency, easy operation and handling, economic efficiency and little secondary pollution to the environment. In this paper, a high-iron containing incineration sewage sludge ash (ISSA) was modified by combined acid leaching and precipitation processes to improve its adsorption capacity of As(V). The effects of pH, time, temperature and ionic strength on the adsorption of As(V) were investigated by batch adsorption experiments. The results indicated that iron (mainly present as hematite) in the ISSA was rearranged to Fe(SO4)OH. The modified ISSA showed an excellent adsorption potential for As(V) under acidic conditions and the adsorption capacity was around 9 times of the unmodified ISSA at pH 2-3. The adsorption process was fast during the first 2 h and reached an equilibrium at around 6 h. click here The Freundlich model could well fit the adsorption isotherm data, the presence of NO3- and Cl- had a negligible influence on the As(V) removal by the modified ISSA, while PO43- and SO42- could significantly suppress As(V) removal via competitive adsorption.

Autoři článku: Flanaganbaker0440 (Fleming Templeton)