Mckayjessen2118

Z Iurium Wiki

Verze z 30. 9. 2024, 20:54, kterou vytvořil Mckayjessen2118 (diskuse | příspěvky) (Založena nová stránka s textem „An exopolysaccharide, EPS-B108, was isolated from the fermented broth (with a yield of 11.3 g/L) of halotolerant Bacillus sp. SCU-E108 by ethanol precipita…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

An exopolysaccharide, EPS-B108, was isolated from the fermented broth (with a yield of 11.3 g/L) of halotolerant Bacillus sp. SCU-E108 by ethanol precipitation, anion-exchange and gel-filtration chromatography, and well characterized by means of physical, chemical and spectral techniques. Data indicated that EPS-B108 was composed solely of fructose with a high molecular weight of 3.578 × 107 g/mol, and contained a β-(2 → 6)-linked d-Fruf backbone with a single β-d-Fruf at C-1 position. An irregular saccular- or cake-like shape was observed under the enlarged view. It showed no acute oral toxicity in mice, and had good thermal stability (242 °C), solubility in water (91.3%) and oil-holding capacity (1717.0%). Steady-shear flow and dynamical viscoelasticity of aqueous EPS-B108 solutions varied with the polymer concentration, shear rate and temperature, and were described by the Power-law model. Together, these findings support the further application of EPS-B108 as an alternative source of functional food additives and ingredients.In this study, multivariate methodologies were applied in the optimization of a dispersive liquid-liquid microextraction (DLLME) method, aiming at the determination of Cu and Mn in coconut water samples by flame atomic absorption spectrometry. GSK 3 inhibitor Some extractors (chloroform and CCl4), dispersants (ethanol, methanol and acetonitrile) and complexing agents (5-Br-PADAP and Dithzone) were previously tested in the extraction. A mixture design was used to optimize the component proportions formed by chloroform (10%), acetonitrile (76%), and 0.020% 5-Br-PADAP solution (14%). Doehlert design optimized the variables pH, NaCl, and buffer amounts for the extraction of both metals. The following analytical characteristics, respectively for Cu and Mn, were accessed limit of quantification (4.83 and 3.32 µg L-1), enrichment factors (11 and 8 fold), and precision (6.6 and 6.0% RSD, n = 10). Addition/recovery tests of the analytes allowed to find values in the range of 96.5-120% for Cu and 99-107% for Mn.The β-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The β-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze β-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the β-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley β-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley β-glucan, and the rate of hydrolysis of β-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.Acetylferulic paeonol ester (APE) and ferulic paeonol ester (FPE) were synthesized, and their structures were confirmed by NMR, mass spectra, IR and UV-vis data. The antioxidant properties of the synthesized compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and [(2-azino-bis (3-ethylbenzthiazoline)-6 -sulfonic acid] (ABTS) assay as well as the production of oxidation products (peroxides, conjugated dienes, thiobarbituric acid-reactive substances, free fatty acids and total aldehydes) in an elevated temperature (60 °C) storage trial of fish oil extracted from anchovy. Furthermore, the changes in fatty acid composition were monitored by gas chromatography-mass spectrometry. The results showed that APE was more effective in restraining fish oil oxidation compared to FPE, ferulic acid, paeonol and the commercial antioxidant-butylated hydroxytoluene (BHT). This study demonstrated molecular combinations obtained by covalent bonding two antioxidant active molecules can result in novel compounds with enhanced antioxidant activities.After more than ten years since pesticide residues were detected in citrus-flavored soft drinks, this study reveals that the situation has not changed. A new sensitive multiresidue UHPLC-MS/MS method has been validated for 88 pesticides, which was used to analyze 200 samples manufactured in 67 countries, 80% corresponding to fruit-based soft drinks. The results show that 98% of the samples collected worldwide contained at least one pesticide, and 85% of them contained more than 4 pesticides. 40 out of 88 target compounds were quantified among the screened samples. Europe was the world region with the highest total amount of pesticides, probably due to the higher content of juice concentrate in samples, which may be the main source of the pesticide residues. Nevertheless, residues were also found in samples with no juice, so water quality also plays an important role as the main ingredient of citrus-flavored soft drinks.The contamination of milk by antibiotic residues is a worldwide health and food safety problem. There is a need to develop new methods for the rapid determination of antibiotic residues in milk. A method has been developed for determining tylosin residues directly in powdered milk using Fourier Transformed Infrared spectroscopy (FTIR). Tylosin is a broad-spectrum macrolide antibiotic. The spectra obtained were submitted to chemometric analysis to obtain a prediction model for tylosin concentration in powdered milk. Using the Boruta algorithm, the absorption bands related to the milk contamination by the antibiotic were identified. Random forest was shown to be adequate for the prediction of tylosin residues in milk at low concentrations (≤ 100 μg L-1) and the prediction model generated showed high correlation and determination coefficients (greater than 0.95). The proposed methodology proved to be efficient for the investigation of antibiotic residues in powdered milk.We evaluated the use of attenuated total reflectance infrared spectroscopy for simultaneous in situ quantification of the nutritional composition of liquid food stuffs in the industrial kitchen context. Different methodologies were compared, including dry and wet acquisition along with instrument parameters and measurement times of 4 and 60 s. The most effective technique was 1-minute measurement, with prediction errors of 2.6, 0.7, 1.0, 2.2, 0.8, 2.4 g/100 mL and 150 Kcal, for carbohydrates, proteins, fat, sugars, saturated fat, water and energy values, respectively.The 4-second method resulted in larger errors but was more applicable for inline measurements. Dry measurements successfully predicted the fractions of proteins, fat, carbohydrates, and sugars, relative to total solids. An app was created to facilitate implementation in a kitchen environment. Compared with other techniques recommended by the FAO, the approach offered a simple alternative for simultaneous prediction of nutritional parameters in an industrial kitchen set-up.Whey proteins are widely used as functional ingredients in various food applications owing to their emulsifying, foaming, and gelling properties. However, their functional attributes are limited in some applications because of the dependence of their performance on pH, mineral levels, and temperature. Several approaches have been investigated to enhance the functional performance of whey proteins by interacting them with polyphenols via covalent bonds (conjugates) or non-covalent bonds (complexes). The interaction of the polyphenols to the whey proteins alters their molecular characteristics, techno-functional attributes, and biological properties. Analytical methods for characterizing the properties of whey protein-polyphenol complexes and conjugates are highlighted, and a variety of potential applications within the food industry are discussed, including as antioxidants, emulsifiers, and foaming agents. Finally, areas for future research are highlighted.In this study, the chemical composition of the essential oil (EO) of Origanum vulgare was characterized, and the antifungal activity of the EO and some individual components against Botrytis cinerea (Y-BC-1) was determined. Twenty-one components were identified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection, constituting 95.7% of the EO. The major components were methyleugenol (16.5%), myristicin (15.6%), carvacrol (15.0%), thymol (9.8%), apioline (9.4%), and (Z)-β-farnesene (8.7%). B. cinerea in vitro mycelial growth and spore germination were strongly inhibited by the EO and two of its main components, thymol and carvacrol. In vivo vapor contact assays, the antifungal activity of the EO at 250 mg/L suppressed the decay of cherry tomatoes 96.39%. Moreover, thymol and carvacrol at 125 mg/L completely suppressed the gray mold. Thus, the EO of O. vulgare is a potentially nontoxic and ecofriendly botanical fungicide for postharvest control of gray mold.Polyphenols from the leaves of sea buckthorn (Hippophae rhamnoides L.) are nutritious and bioactive substances that can be used as nutritional supplements. To improve their stability and bioaccessibility in vivo, chemical extracts of sea buckthorn leaves were, for the first time, encapsulated using electrohydrodynamic technology. The microcapsules were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The extract and microcapsules were evaluated for total phenols and flavonoids, total antioxidant activity, and their inhibitory effects on metabolic syndrome-related enzymes (α-glucosidase, α-amylase, and pancreatic lipase) under in vitro simulated digestion. The results indicated that the extract was successfully encapsulated; encapsulation protected polyphenols and flavonoids from degradation and increase their bioaccessibility in the intestine. The antioxidant activity and the inhibition of metabolic syndrome-related enzymes were better reserved after encapsulation. Our findings will help in promoting the potential of sea buckthorn as a nutritional supplement and expanding its commercial use.The aim of this research was to clearly clarify the deterioration mechanism of heat-denatured gluten proteins by exploring the change of aggregation and structural characteristics of heat-denatured gluten proteins in the steamed bread system and the steamed gluten system during frozen storage. An increase in the total SDS-soluble protein content was determined, which mainly attributed to the soluble monomer protein content increased. Combined with the significant increase of free sulfhydryl, from 3.12 μmol/g to 5.06 μmol/g and 2.64 μmol/g to 3.29 μmol/g, respectively, it can be inferred that the proteins depolymerization induced by frozen storage was mainly involved in the breakdown of heat-induced glutenin-gliadin disulfide cross-linking. Frozen storage induced the conversion of random coil structure to β-sheet structure and a ruptured microstructure with small fragment was observed. Moreover, the protein of steamed bread system was easier to depolymerize than that of the steamed gluten system.

Autoři článku: Mckayjessen2118 (Kjeldsen Hatcher)