Fitzsimmonsstefansen2218

Z Iurium Wiki

Verze z 30. 9. 2024, 20:52, kterou vytvořil Fitzsimmonsstefansen2218 (diskuse | příspěvky) (Založena nová stránka s textem „Climate change, overfishing, marine pollution and other anthropogenic drivers threaten our global oceans. More effective efforts are urgently required to i…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Climate change, overfishing, marine pollution and other anthropogenic drivers threaten our global oceans. More effective efforts are urgently required to improve the capacity of marine conservation action worldwide, as highlighted by the United Nations Decade of Ocean Science for Sustainable Development 2021-2030. Marine citizen science presents a promising avenue to enhance engagement in marine conservation around the globe. Building on an expanding field of citizen science research and practice, we present a global overview of the current extent and potential of marine citizen science and its contribution to marine conservation. Employing an online global survey, we explore the geographical distribution, type and format of 74 marine citizen science projects. By assessing how the projects adhere to the Ten Principles of Citizen Science (as defined by the European Citizen Science Association), we investigate project development, identify challenges and outline future opportunities to contribute to marine science and conservation. Synthesizing the survey results and drawing on evidence from case studies of diverse projects, we assess whether and how citizen science can lead to new scientific knowledge and enhanced environmental stewardship. Overall, we explore how marine citizen science can inform current understanding of marine biodiversity and support the development and implementation of marine conservation initiatives worldwide. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, 'blue carbon' ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO2 concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Despite their limited area relative to the global ocean, coastal zones-the regions where land meets the sea-play a disproportionately important role in generating ecosystem services. However, coastal ecosystems are under increasing pressure from human populations. In particular, urban stormwater is an increasingly important threat to the integrity of coastal systems. Urban catchments exhibit altered flow regimes that impact ecosystem processes and coastal foodwebs. In addition, urban stormwater contains complex and unpredictable mixtures of chemicals that result in a multitude of lethal and sublethal impacts on species in coastal systems. find more Along the western coast of the United States, we estimate that hundreds of billions of kilograms of suspended solids flow off land surfaces and enter the Northern California Current each year. However, 70% of this pollution could be addressed by treating only 1.35% of the land area. Determining how to prioritize treatment of stormwater in this region requires a clear articulation of objectives-spatial distribution of appropriate management actions is dependent on the life histories of species, and management schemes optimized for one species may not achieve desired objectives for other species. In particular, we highlight that the scale of stormwater interventions must match the ecological scale relevant to species targeted by management. In many cases, management and policy will require mechanisms in order to ensure that local actions scale-up to efficiently and effectively achieve management objectives. In the face of rapid urbanization of coastal zones, failure to consider the match of management and ecological scales will result in the continued decline of coastal ecosystems and the species they support. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Whereas the conservation and management of biodiversity has become a key issue in environmental sciences and policy in general, the conservation of marine biodiversity faces additional challenges such as the challenges of accessing field sites (e.g. polar, deep sea), knowledge gaps regarding biodiversity trends, high mobility of many organisms in fluid environments, and ecosystem-specific obstacles to stakeholder engagement and governance. This issue comprises contributions from a diverse international group of scientists in a benchmarking volume for a common research agenda on marine conservation. We begin by addressing information gaps on marine biodiversity trends through novel approaches and technologies, then linking such information to ecosystem functioning through a focus on traits. We then leverage the knowledge of these relationships to inform theory aiming at predicting the future composition and functioning of marine communities. Finally, we elucidate the linkages between marine ecosystems and human societies by examining economic, management and governance approaches that contribute to effective marine conservation in practice. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Whereas the anthropogenic impact on marine biodiversity is undebated, the quantification and prediction of this change are not trivial. Simple traditional measures of biodiversity (e.g. richness, diversity indices) do not capture the magnitude and direction of changes in species or functional composition. In this paper, we apply recently developed methods for measuring biodiversity turnover to time-series data of four broad taxonomic groups from two coastal regions the southern North Sea (Germany) and the South African coast. Both areas share geomorphological features and ecosystem types, allowing for a critical assessment of the most informative metrics of biodiversity change across organism groups. We found little evidence for directional trends in univariate metrics of diversity for either the effective number of taxa or the amount of richness change. However, turnover in composition was high (on average nearly 30% of identities when addressing presence or absence of species) and even higher when taking the relative dominance of species into account. This turnover accumulated over time at similar rates across regions and organism groups. We conclude that biodiversity metrics responsive to turnover provide a more accurate reflection of community change relative to conventional metrics (absolute richness or relative abundance) and are spatially broadly applicable. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.Environments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment. They predict that species traits will track a moving environmental optimum with a lag that approaches a constant. If fitness is negative at this lag, the species will go extinct. There have been many elaborations of these models incorporating increased genetic realism. Here, we review and explore the consequences of four ecological complications non-quadratic fitness functions, interacting density- and trait-dependence, species interactions and fundamental limits to adaptation. We show that non-quadratic fitness functions can result in evolutionary tipping points and existential crises, as can the interaction between density- and trait-dependent mortality.

Autoři článku: Fitzsimmonsstefansen2218 (Lyng Bilde)