Mckeehodges2198

Z Iurium Wiki

Verze z 30. 9. 2024, 20:30, kterou vytvořil Mckeehodges2198 (diskuse | příspěvky) (Založena nová stránka s textem „DNA N6-methyladenine (6mA) is a chemical modification at the N6-positon of adenine. In the last decades, 6mA had been found in genome from numerous prokary…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

DNA N6-methyladenine (6mA) is a chemical modification at the N6-positon of adenine. In the last decades, 6mA had been found in genome from numerous prokaryotic species, but only existed in a few lower eukaryotes. In prokaryotes, 6mA plays an important role in restriction-modification, DNA replication, and DNA mismatch repair. Because of the too low abundance of 6mA, it was long-stalled whether 6mA existed in multicellular eukaryotes and playing any functions, particularly in mammals. In recent years, partially benefitting from the advances in analytical methods, 6mA was found in the genomes from Drosophila melanogaster, Chlamydomonas algae, Caenorhabditis elegans, zebrafish, Xenopus laevis and mouse embryonic stem cells and even in the human genome. The 6mA was dynamic changed in early embryonic development of fly and zebrafish and much more enriched in gene body of transposons in fly, repetitive regions in zebrafish, around the transcription start sites in Chlamydomonas, and widespread distribution in C. elegans, indicating 6mA probably playing different functions in different species. Meanwhile, 6mA methylases and demethylases were found in fly, worm, and Chlamydomonas. In this chapter, we will briefly review the distribution, regulation, and function of 6mA in eukaryotes and focus on the advances of 6mA analysis methods, especially LC-MS/MS, immunoprecipitation, next-generation sequencing, and single-molecule real-time sequencing technology.Multicellular organisms achieve their complex living activities through the highly organized metabolic interplay of individual cells and tissues. This complexity has driven the need to spatially resolve metabolomics down to the cellular and subcellular level. Recent technological advances have enabled mass spectrometry imaging (MSI), especially matrix-assisted laser desorption/ionization (MALDI), to become a powerful tool for the visualization of molecular species down to subcellular spatial resolution. In the present chapter, we summarize recent advances in the field of MALDI-MSI, with respect to single-cell level resolution metabolomics directly on tissue. In more detail, we focus on advancements in instrumentation for MSI at single-cell resolution, and the applications towards metabolomic scale imaging. Finally, we discuss new computational tools to aid in metabolite identification, future perspective, and the overall direction that the field of single-cell metabolomics directly on tissue may take in the years to come.Compared to one-dimensional gas chromatography with mass spectrometry (GC-MS), GC × GC-MS provides significantly increased peak capacity, resolution, and sensitivity for analysis of complex biological samples. In the last decade, GC × GC-MS has been increasingly applied to the discovery of metabolite biomarkers and elucidation of metabolic mechanisms in human diseases. The recent development of coupling GC × GC with a high-resolution mass spectrometer further accelerates these metabolomic applications. In this chapter, we will briefly review the instrumentation, sample preparation, data analysis, and applications of GC × GC-MS-based metabolomic analysis.Shotgun lipidomics is an analytical approach for large-scale and systematic analysis of the composition, structure, and quantity of cellular lipids directly from lipid extracts of biological samples by mass spectrometry. This approach possesses advantages of high throughput and quantitative accuracy, especially in absolute quantification. As cancer research deepens at the level of quantitative biology and metabolomics, the demand for lipidomics approaches such as shotgun lipidomics is becoming greater. In this chapter, the principles, approaches, and some applications of shotgun lipidomics for cancer research are overviewed.Nuclear magnetic resonance (NMR) spectroscopy is a major analytical method used in the growing field of metabolomics. Although NMR is relatively less sensitive than mass spectrometry, this analytical platform has numerous characteristics including its high reproducibility and quantitative abilities, its nonselective and noninvasive nature, and the ability to identify unknown metabolites in complex mixtures and trace the downstream products of isotope labeled substrates ex vivo, in vivo, or in vitro. Metabolomic analysis of highly complex biological mixtures has benefitted from the advances in both NMR data acquisition and analysis methods. Although metabolomics applications span a wide range of disciplines, a majority has focused on understanding, preventing, diagnosing, and managing human diseases. This chapter describes NMR-based methods relevant to the rapidly expanding metabolomics field.Due to the great diversity of chemical and physical properties of metabolites as well as a wide range of concentrations of metabolites present in metabolomic samples, performing comprehensive and quantitative metabolome analysis is a major analytical challenge. Conventional approach of combining various techniques and methods with each detecting a fraction of the metabolome can lead to the increase in overall metabolomic coverage. However, this approach requires extensive investment in equipment and analytical expertise with still relatively low coverage and low sample throughput. Chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) offers an alternative means of increasing metabolomic coverage while maintaining high quantification precision and accuracy. Ivacaftor cost This chapter describes the CIL LC-MS method and its key features for metabolomic analysis.Abnormal redox regulation is thought to contribute to schizophrenia (SCZ). Accumulating studies have shown that the plasma antioxidant enzyme activity is closely associated with the course and outcome in antipsychotics-naïve first-episode (ANFE) patients with SCZ. The main purpose of this study was to investigate the effect of risperidone on oxidative stress markers in ANFE patients and the relationship between risperidone response and changes in oxidative stress markers. Plasma activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) enzyme, total antioxidant status (TAS), and malondialdehyde (MDA) levels were measured in 354 ANFE patients and 152 healthy controls. The clinical symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). Patients received risperidone monotherapy for 12 weeks and oxidative stress markers and PANSS were measured at baseline and at follow-up. Compared with healthy controls, the patients exhibited higher activities of SOD, CAT, and TAS levels, but lower MDA levels and GPx activity.

Autoři článku: Mckeehodges2198 (McGee Holbrook)