Duckworthsvenningsen3528
Hyperglycemia is a comorbidity in 60-80% of stroke patients; nevertheless, neuroprotective drugs like NMDA receptor (NMDAR) antagonists are typically assessed in normoglycemic animals at the preclinical stage before they are approved to enter clinical trials. Interestingly, as a possible explanation for the translational failure of NMDAR antagonists, it was recently reported that stroke occurring during nighttime causes smaller infarctions in rodents and therefore has a smaller window for neuroprotection. To investigate why stroke occurring during different circadian phases confers a difference in severity, we reanalyzed the published source data and found that some mice that were used in the daytime have higher blood glucose than mice that were used in the nighttime. We then repeated the experiments but found no difference in blood glucose concentration or infarct volume regardless of the circadian phase during which stroke occurs. On the other hand, induction of hyperglycemia by glucose injection reproducibly increased stroke severity. Moreover, although hyperglycemia increases infarction volume, which presumably would provide a larger window for neuroprotection, uncompetitive NMDAR antagonists were unexpectedly found to exacerbate stroke outcome by worsening hyperglycemia. Taken together, our new data and reanalysis of the published source data suggested that blood glucose during stroke, rather than the circadian phase during which stroke occurs, affects the size of the ischemic infarction; moreover, we have revealed drug-induced hyperglycemia as a potential reason for the translational failure of uncompetitive NMDAR antagonists. Future trials for this class of neuroprotective drugs should monitor patients' blood glucose at enrollment and exclude hyperglycemic patients.The superior parietal lobule (SPL) integrates somatosensory, motor, and visual signals to dynamically control arm movements. During reaching, visual and gaze signals are used to guide the hand to the desired target location, while proprioceptive signals allow to correct arm trajectory, and keep the limb in the final position at the end of the movement. Three SPL areas are particularly involved in this process V6A, PEc, PE. Here, we evaluated the influence of eye and arm position on single neuron activity of these areas during the holding period at the end of arm reaching movements, when the arm is motionless and gaze and hand positions are aligned. Two male macaques (Macaca fascicularis) performed a foveal reaching task while single unit activity was recorded from areas V6A, PEc, and PE. We found that at the end of reaching movements the neurons of all these areas were modulated by both eye position and static position of the arm. V6A and PEc showed a prevalent combination of gaze and proprioceptive input, while PE seemed to encode these signals more independently. Our results demonstrate that all these SPL areas combine gaze and proprioceptive input to provide an accurate monitoring of arm movements.The dynamic regulation of autophagy in β-cells by cycles of fasting-feeding and its effects on insulin secretion are unknown. In β-cells, mechanistic target of rapamycin complex 1 (mTORC1) is inhibited while fasting and is rapidly stimulated during refeeding by a single amino acid, leucine, and glucose. Stimulation of mTORC1 by nutrients inhibited the autophagy initiator ULK1 and the transcription factor TFEB, thereby preventing autophagy when β-cells were continuously exposed to nutrients. https://www.selleckchem.com/products/azd9291.html Inhibition of mTORC1 by Raptor knockout mimicked the effects of fasting and stimulated autophagy while inhibiting insulin secretion, whereas moderate inhibition of autophagy under these conditions rescued insulin secretion. These results show that mTORC1 regulates insulin secretion through modulation of autophagy under different nutritional situations. In the fasting state, autophagy is regulated in an mTORC1-dependent manner, and its stimulation is required to keep insulin levels low, thereby preventing hypoglycemia. Reciprocally, stimulation of mTORC1 by elevated leucine and glucose, which is common in obesity, may promote hyperinsulinemia by inhibiting autophagy.Pancreastatin (PST), a chromogranin A-derived potent physiological dysglycemic peptide, regulates glucose/insulin homeostasis. We have identified a nonsynonymous functional PST variant (p.Gly297Ser; rs9658664) that occurs in a large section of human populations. Association analysis of this single nucleotide polymorphism with cardiovascular/metabolic disease states in Indian populations (n = 4,300 subjects) displays elevated plasma glucose, glycosylated hemoglobin, diastolic blood pressure, and catecholamines in Gly/Ser subjects as compared with wild-type individuals (Gly/Gly). Consistently, the 297Ser allele confers an increased risk (∼1.3-1.6-fold) for type 2 diabetes/hypertension/coronary artery disease/metabolic syndrome. In corroboration, the variant peptide (PST-297S) displays gain-of-potency in several cellular events relevant for cardiometabolic disorders (e.g., increased expression of gluconeogenic genes, increased catecholamine secretion, and greater inhibition of insulin-stimulated glucose uptake) than the wild-type peptide. Computational docking analysis and molecular dynamics simulations show higher affinity binding of PST-297S peptide with glucose-regulated protein 78 (GRP78) and insulin receptor than the wild-type peptide, providing a mechanistic basis for the enhanced activity of the variant peptide. In vitro binding assays validate these in silico predictions of PST peptides binding to GRP78 and insulin receptor. In conclusion, the PST 297Ser allele influences cardiovascular/metabolic phenotypes and emerges as a novel risk factor for type 2 diabetes/hypertension/coronary artery disease in human populations.Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 case subjects and 279,507 control subjects from 7 European-ancestry cohorts, including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five variants had minor allele frequency of less then 5% and were each associated with more than a doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19; P = 1 × 10-16) and a stronger effect in men than in women (for interaction, P = 7 × 10-7). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL cholesterol and a 20% increase in triglycerides; colocalization analysis linked this signal to reduced expression of the nearby PELO gene. These results demonstrate that recessive models, when compared with GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.Cystic hydatid disease or cystic echinococcosis (CE) is a globally endemic zoonosis caused by the larval cyst stage of the tapeworm Echinococcus granulosus Concomitant presence of CE and hepatocellular carcinoma (HCC) is a rare clinical scenario. A 70-year-old male patient presented with acute abdominal pain to the surgical outpatient department. On evaluation, a cystic lesion with solid components and free fluid in the abdomen was observed, which led to multiple differentials in the working diagnosis. A CT showed the mass to have a delayed enhancement. Surgical exploration revealed a partially ruptured hydatid cyst with daughter cysts in the abdominal cavity and a solid-component mass lesion. We proceeded with a right partial hepatectomy. Pathological evaluation revealed a pale mass lesion with a large collapsed cyst. HCC with unusual dense fibrillar fibrosis and cystic interface with normal parenchyma was observed. This case connects the multimodal assessment of radiology, surgery and pathology.The fundamental principle of precision oncology is centralized on identification of therapeutically exploitable targets that provides individual cancer patients an opportunity to make informed decisions on a personalized level. To facilitate and adopt such concepts within clinical practice, we have initiated a nation-wide, multi-institutional precision oncology screening program to examine and enroll patients into the most appropriate clinical trial based on their unique molecular properties. To determine prevalence of essential major driver mutations and to explore their dynamic associations at both single molecular and pathway levels, we first present a comprehensive overview on the genomic properties of East Asian cancer patients. We further delineated the extent of genomic diversity as well as clinical utility between patients from western and eastern cultures at the pan-cancer and single tumor entity levels. To support fellow oncology communities in future investigations involving large-scale analysis, all data have been made accessible to the public (https//kmportal.or.kr).Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia.BRD4-cJUN-CCL2-TNFα axis disruption in basal-like pancreatic cancer restores a favorable phenotype.Blinatumomab nonresponders have worse CD19-CAR response than responders or blinatumomab-naïve patients.Highly complex genomic amplification arises from chromothripsis followed by circular recombination.
We sought to determine the effect of stimulation during positive pressure ventilation (PPV) on the number of spontaneous breaths, exhaled tidal volume (VTe), mask leak and obstruction.
Secondary analysis of a prospective, randomised trial comparing two face masks.
Single-centre delivery room study.
Newborn infants ≥34 weeks' gestation at birth.
Resuscitations were video recorded. Tactile stimulations during PPV were noted and the timing, duration and surface area of applied stimulus were recorded. Respiratory flow waveforms were evaluated to determine the number of spontaneous breaths, VTe, leak and obstruction. Variables were recorded throughout each tactile stimulation episode and compared with those recorded in the same time period immediately before stimulation.
Twenty of 40 infants received tactile stimulation during PPV and we recorded 57 stimulations during PPV. During stimulation, the number of spontaneous breaths increased (median difference (IQR) 1 breath (0-3); p
<0.001) and VTe increased (0.