Cardenaslocklear4548
Studies on animal models have demonstrated that feeding a low-arginine diet inhibits triacylglycerol (TAG) secretion from the liver, resulting in marked fatty liver development in rats. Here, we first showed that culturing hepatocytes in the medium mimicking the serum amino acid profile of low-arginine diet-fed rats induced TAG accumulation in the cells, indicating that the specific amino acid profile caused TAG accumulation in hepatocytes. Dietary adenine supplementation completely recovered hepatic TAG secretion and abolished hepatic TAG accumulation in rats. A comprehensive non-linear analysis revealed that inhibition of hepatic TAG accumulation by dietary adenine supplementation could be predicted using only serum amino acid concentration data. Comparison of serum amino acid concentrations indicated that histidine, methionine, and branched-chain amino acid (BCAA) concentrations were altered by adenine supplementation. Furthermore, when the serum amino acid profiles of low-arginine diet-fed rats were altered by modifying methionine or BCAA concentrations in their diets, their hepatic TAG accumulation was abolished. Altogether, these results suggest that an increase in methionine and BCAA levels in the serum in response to dietary arginine deficiency is a key causative factor for hepatic TAG accumulation, and dietary adenine supplementation could disrupt this phenomenon by altering serum amino acid profiles.Cytomegalovirus (CMV) infection is a major complication during allogeneic stem cell transplantation (allo-SCT). However, mechanisms of adaptive immunity that drive this remain unclear. To define early immunological responses to CMV after transplantation, we using next-generation sequencing to examine the repertoire of T-cell receptors in CD8+/CMV pp65 tetramer+ cells (CMV-CTLs) in peripheral blood samples obtained from 16 allo-SCT recipients with HLA-A*2402 at the time of CMV reactivation. In most patients, TCR beta repertoire of CMV-CTLs was highly skewed (median Inverse Simpson's index 1.595) and, 15 of 16 patients shared at least one TCR-beta clonotype with ≥ 2 patients. The shared TCRs were dominant in 12 patients and, two clonotypes were shared by about half of the patients. Similarity analysis showed that CDR3 sequences of shared TCRs were more similar than unshared TCRs. TCR beta repertoires of CMV-CTLs in 12 patients were also analyzed after 2-4 weeks to characterize the short-term dynamics of TCR repertoires. In ten patients, we observed persistence of prevailing clones. In the other two patients, TCR repertoires became more diverse, major clones declined, and new private clones subsequently emerged. These results provided the substantive clue to understand the immunological behavior against CMV reactivation after allo-SCT.Several agonists to CD40 have shown to induce acquired immune responses. Here, we developed and evaluated the rolling circle amplification (RCA) products that are based on anti-CD40 DNA aptamers as a novel vaccine adjuvant. First, we developed DNA aptamers with specific binding affinity to chicken CD40 extra domain (chCD40ED). Next, we prepared the RCA products that consist of these aptamers to increase the spanning space and overall binding affinity to chCD40ED. Using 8 DNA aptamer candidates, 4 aptamer-based RCA products (aptamer RCAs) were generated, each consisting of two distinct aptamers. We demonstrated that all 4 aptamer RCAs significantly induced the signal transduction in chicken HD11 macrophage cell line (p less then 0.05). Finally, we conjugated one of the aptamer RCAs (Aptamer RCA II) to M2e epitope peptide of influenza virus as a model hapten, and the immune complex was injected to chickens. Aptamer RCA II stimulated anti-M2e IgG antibody production to the level significantly higher as compared to the control (M2e epitope alone; p less then 0.05). AUPM-170 clinical trial The results of our work suggest that aptamer RCA is a novel platform to boost the efficacy of vaccines, which might find broad applications to other antigens beyond M2e epitope evaluated in this study using chicken infection model.Kidney injury during donation after circulatory determination of death (DCDD) includes warm ischemic (WI) injury from around the time of asystole, and cold ischemic (CI) injury during cold preservation. We have previously shown that Matrix Metalloproteinases (MMPs) are involved in CI injury and that Doxycycline (Doxy), an antibiotic and known MMP inhibitor, protects the transplant kidney during CI. The purpose of our study was to determine if Doxy given before asystole can also prevent injury during WI. A rat model of DCDD was used, including Control, Preemptive Doxy (45 mg/kg iv), and Preemptive and Perfusion (100 microM) Doxy groups. Thirty minutes after asystole, both kidneys were removed. The left kidney was perfused at 4 °C for 22 h, whereas the right was used to establish the degree of warm ischemic injury prior to cold preservation. MMP-2 in the perfusate was significantly reduced in both treatment groups [Control 43.7 ± 7.2 arbitrary units, versus Preemptive Doxy group 23.2 ± 5.5 (p = 0.03), and 'Preemptive and Perfusion' group 18.0 ± 5.6 (p = 0.02)]. Reductions in NGAL, LDH, and MMP-9 were also seen. Electron microscopy showed a marked reduction in mitochondrial injury scores in the treatment groups. Pre-arrest Doxy was associated with a reduction in injury markers and morphologic changes. Doxy may be a simple and safe means of protecting transplant kidneys from both WI and CI.During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence.