Coatesaldridge1953

Z Iurium Wiki

Verze z 30. 9. 2024, 19:26, kterou vytvořil Coatesaldridge1953 (diskuse | příspěvky) (Založena nová stránka s textem „Inspired by the recent practical application of two-dimensional (2D) nanomaterials as gas sensors, catalysts, and materials for waste gas disposal, herein,…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Inspired by the recent practical application of two-dimensional (2D) nanomaterials as gas sensors, catalysts, and materials for waste gas disposal, herein, the adsorption behaviors of environmental gas molecules, including NO, CO, O2, CO2, NO2, H2O, H2S, and NH3, on the 2D pristine and defective MoSi2N4 (MSN) monolayers were systematically investigated using spin-polarized density functional theory (DFT) calculations. Our results reveal that all the gas molecules are physically adsorbed on the MSN surface with small charge transfer, but the electronic structures of NO, NO2, and O2 are obviously modified due to the in-gap states. The introduction of N vacancy on the MSN surface enhances the interaction between gas molecules and the substrate, especially for NO2 and O2. Interestingly, the adsorption type of NO and CO evolves from physisorption to chemisorption, which may be utilized in NO and CO catalytic reaction. Furthermore, the moderate adsorption strength and obvious changes in electronic properties of H2O and H2S on the defective MSN make them have promising prospects in highly sensitive and reusable gas sensors. This work offers several promising gas sensors based on the MSN monolayer and also provides a theoretical reference of other related 2D materials in the field of gas sensors, catalysts, and toxic gas disposal.The Lurgi gasifier in China is one of the most suitable technologies to produce synthetic natural gas (SNG) from coal; however, a large amount of byproduct ash is discharged during the Lurgi gasification process, causing many environmental problems. Based on ash samples collected from a commercial Lurgi gasifier in a Chinese coal-to-SNG plant, this paper studied the mineral composition and microscopic appearance of gasification ash with different particle sizes. The typical minerals were identified and investigated by comparing them with the ash from a laboratory fixed-bed reactor. The results showed that the main high-temperature minerals in the Lurgi gasification ash with different particle sizes under the gasification condition of 4 MPa and 1100 °C were anorthite (CaAl2Si2O8), augite (CaFeSi2O6), hematite (Fe2O3), and gehlenite (Ca2Al2SiO7). As the particle size of the Lurgi gasification ash increased, the quartz content increased but the residual carbon content decreased. Additionally, the high-temperature minerals were more likely to agglomerate with fine particles of the ash. The FactSage modeling showed that calcium-bearing minerals were formed earlier than iron-bearing minerals. The high Fe2O3 content in ash hindered the transformation of calcium-bearing minerals into the high-melting-point mullite, resulting in a low ash flow temperature. Additionally, the fine ash had a relatively high content of calcium-bearing minerals which was not conducive to its utilization as an additive in cement and concrete.To improve osseointegration caused by the stress-shielding effect and the inert nature of titanium-based alloys, in this work, we successfully constructed a strontium calcium phosphate (Sr-CaP) coating on three-dimensional (3D)-printed Ti6Al4V scaffolds to address this issue. The energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) results indicated that the coatings with and without Sr doping mainly consisted of CaHPO4. The bonding strength of Sr doping coating met the required ISO 13 779-4-2018 standard (≥15 MPa). The in vitro results suggested that the Sr-CaP-modified Ti6Al4V scaffolds were found to effectively promote mice bone-marrow stem cell (mBMSC) adhesion, spreading, and osteogenesis. The in vivo experiments also showed that the Sr-CaP-modified Ti6Al4V scaffolds could significantly improve bone regeneration and osseointegration. More importantly, Sr-doped CaP-coated Ti6Al4V scaffolds were found to accelerate bone healing in comparison to CaP-coated Ti6Al4V scaffolds. The Sr-CaP-modified Ti6Al4V scaffolds are considered a promising strategy to develop bioactive surfaces for enhancing the osseointegration between the implant and bone tissue.Here, a series of integrated rust conversion agents/coatings were synthesized by esterification reaction of 3,4,5-trihydroxybenzoic acid (GA) and triethanolamine (TE). The structural features, rust conversion ability, and corrosion resistance of the synthesized rust conversion agents/coatings were analyzed using the Fourier transform infrared tests, scanning electron microscopy tests, X-ray diffraction tests, and electrochemical measurements. It was found that when the mass ratio of TE and GA was 21, the synthesized rust conversion agent/coating has best rust conversion ability and anti-corrosion performance (i.e., corrosion current density 7.480 × 10-7 A/cm2). In addition, different from the traditional coatings, the integrated rust conversion coating developed in this study combines the primer and topcoat of traditional coatings into one, which can significantly increase the on-site construction efficiency. Furthermore, a new rust conversion mechanism for the optimized rust conversion agent/coating was proposed. The phenolic hydroxyl functional groups in the rust conversion agent can well chelate with Fe2+/Fe3+ in the original rust layer and then form macromolecular compounds and dense chelating films inside the coating, which tightly wraps rust and also prevents the penetration and diffusion of corrosive medium, making them lose the opportunity to interact with each other.Colloidal particle-stabilized emulsions have recently gained increasing interest as delivery systems for essential oils. Despite the use of silica particles in food and pharmaceutical applications, the formation and release of hydrophilic and hydrophobic silica particle-stabilized emulsions are still not well studied. Thus, in this study, the structures of hydrophilic (A200, A380, 244FP, and 3150) and hydrophobic (R202 and R106) silica were deeply characterized using the solid state, contact angle, and other properties that could affect the formation of emulsions. Following that, Mosla chinensis essential oil emulsions were stabilized with different types of silica, and their characteristics, particularly their release behavior, were studied. Fick's second law was used to investigate the mechanism of release. Additionally, six mathematical models were employed to assess the experimental data of release zero-order, first-order, Higuchi, Hixson-Crowell, Peppas, and Page models. The release mechanism of essential oils demonstrated that diffusion was the dominant mechanism, and the fitting results for the release kinetics confirmed that the release profiles were governed by the Higuchi model. The contact angle and specific surface area were the key properties that affect the release of essential oils from emulsions. Kenpaullone ic50 Hydrophilic A200 was found to be capable of delivering essential oils more efficiently, and silica particles could be extended to achieve the controlled release of bioactives. This study showed that understanding the impact of silica particles on the release behavior provided the basis for modulating and mapping material properties to optimize the performance of emulsion products.Resonance-enhanced two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) spectra are measured for the cis- and trans-3-chlorothioanisole (3ClTA). The first electronic excitation energy (E 1) and the adiabatic ionization energy (IE) of the cis-rotamer are determined to be 33 959±3 and 65 326±5 cm-1, respectively, and those of the trans-rotamer are determined to be 34102±3 and 65 471±5 cm-1, respectively. Density functional theory (DFT) calculations confirm that both the cis- and trans-rotamers of 3ClTA are stable and coexist in their respective S0, S1, and D0 states. Both rotamers adopt planar structures with cis- being slightly more stable than trans- in the respective S0, S1, and D0 states. The conformation, substitution, and isotope effects on the molecular structure, active vibrations, and electronic transition and ionization energies of 3ClTA are analyzed.Decreasing the MgO content can improve most of the metallurgical properties of sinter, but the low-temperature reduction disintegration index (RDI) property will be worse. In order to improve the RDI property of sinter under certain MgO contents, the effects of fine MgO-bearing flux on the strength of sintered samples before and after reduction in three systems (Fe2O3-MgO, Fe2O3-MgO-CaO, and Fe2O3-MgO-CaO-SiO2) were investigated in the present work. The experimental results show that (1) in the three systems, the percentage of fine light calcined magnesite (LCM) increases from 0 to 100%, and the compression strength of the samples before reduction increases from 0.140 to 0.187 MPa, from 0.115 to 0.175 MPa, and from 0.121 to 0.164 MPa, respectively. The compression strength of the samples after reduction increases from 0.062 to 0.151 MPa, from 0.100 to 0.156 MPa, and from 0.099 to 0.151 MPa, respectively. (2) The fundamental reason is that the fine powders can increase the specific surface area and the surface energy of the interface. It is beneficial to promoting the mineralization of MgO-bearing flux. More formation of MgO·Fe2O3 may increase the strength of samples before reduction. Less transformation from Fe2O3 to Fe3O4 may increase the strength of samples after reduction. The microstructures of samples are more compact and uniform. Therefore, fine LCM can improve the strength of sinter before and after reduction. The outcomes of the present work can improve the sintering quality by using the fine MgO-bearing flux in the sintering process.The present study focuses on the use of a metaproteomic approach to analyze Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using high-resolution tandem mass spectrometry. A total of 1600 bacterial proteins were identified in black stain (BS) samples and 2058 proteins in dental plaque (DP) samples, whereas 607 and 582 human proteins were identified in BS and DP samples, respectively. A large diversity of bacteria genera (142) in BS and DP was identified, showing a high prevalence of Rothia, Kingella, Neisseria, and Pseudopropionibacterium in black stain samples. In this work, the high diversity of the dental microbiota and its proteome is highlighted, including significant differences between black stain and dental plaque samples.In order to improve the photodegradation ability of fertilizer coating material and realize the sustainability of fertilizers, in this study, the commercially available photosensitive iron stearate (FeSt3) was wet-ground into submicrometer FeSt3 (SFeSt3) particles and used in preparation of a SFeSt3-modified bio-based polyurethane (PU)-coated controlled release urea (PU-SFe-CRU). The results showed that after 1 month photodegradation, the coating material had significant yellowing, the oxygen content of SFeSt3-modified PU (PU-SFe) increased by 56.89%, and its structure became more porous and looser than PU. The thermal stability of PU-SFe decreased, and more intermediate products were produced after exposure to UV light. The germination experiment showed that PU-SFe before and after photodegradation (up to 60 mg/L) had no adverse effect on the seed germination and bud growth of rice. Additionally, PU-SFe had a significantly higher Cr adsorption capacity after photodegradation due to the increase of the oxygen-containing group and specific surface.

Autoři článku: Coatesaldridge1953 (Kelley Holgersen)