Leondelgado5110
Sucrose synthase is a key enzyme in sucrose metabolism as it saves an important part of sucrose energy in the uridine-5'-diphosphate glucose (UDP-glucose) molecule. As such it is also involved in the synthesis of fundamental molecules such as callose and cellulose, the latter being present in all cell walls of plant cells and therefore also in the gelatinous cell walls of sclerenchyma cells such as bast fibers. Given the importance of these cells in plants of economic interest such as hemp, flax and nettle, in this work we have studied the occurrence of Sucrose synthase in nettle stems by analyzing its distribution between the cytosol, membranes and cell wall. We have therefore developed a purification protocol that can allow the analysis of various characteristics of the enzyme. In nettle, Sucrose synthase is encoded by different genes and each form of the enzyme could be subjected to different post-translational modifications. Therefore, by two-dimensional electrophoresis analysis, we have also traced the phosphorylation profile of Sucrose synthase isoforms in the various cell compartments. This information paves the way for further investigation of Sucrose synthase in plants such as nettle, which is both economically important, but also difficult to study.We aimed to validate the effect of non-canonical splice site variants in the RPGR gene in five patients from four families diagnosed with retinitis pigmentosa. Four variants located in intron 2 (c.154 + 3_154 + 6del), intron 3 (c.247 + 5G>A), intron 7 (c.779-5T>G), and intron 13 (c.1573-12A>G), respectively, were analyzed by means of in vitro splice assays. Splicing analysis revealed different aberrant splicing events, including exon skipping and intronic nucleotide addition, which are predicted to lead either to an in-frame deletion affecting relevant protein domains or to a frameshift of the open reading frame. Our data expand the landscape of pathogenic variants in RPGR, thereby increasing the genetic diagnostic rate in retinitis pigmentosa and allowing patients harboring the analyzed variants to be enrolled in clinical trials.Equisetum myriochaetum is a semi-aquatic plant found on riverbanks that is commonly used in traditional medicine as a diuretic agent. Additionally, the genus Equisetum stands out for its content of the flavonoid kaempferol, a well-known antiproliferative agent. Therefore, in this study, E. myriochaetum ethanolic extract was tested in vitro against a cervical cancer cell line (SiHa). Additionally, the antioxidative activity was evaluated through a 2,2-diphenyl-1-picrilhidrazil (DPPH) assay. Finally, a molecular docking analysis of apigenin, kaempferol, and quercetin on the active site of β-tubulin was performed to investigate their potential mechanism of action. All fractions of E. myriochaetum ethanolic extract showed antioxidative activity. Fraction 14 displayed an antiproliferative capacity with a half maximal inhibitory concentration (IC50) value of 6.78 μg/mL against SiHa cells.Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.A public health crisis is a "touchstone" for testing the ability and capacity of a national health system. In the current era, public health crises are presenting new systematic and cross-border characteristics and uncertainty. The essence of a system for public health crisis governance is the rules administering the stimulus-response chain. The health system generally emphasizes joint participation and communication between different subjects, which may lead to overlap and redundancy as well as a lack of auxiliary support for major public health crisis events. In the context of coronavirus disease 2019 (COVID-19) in China, we track the responses, challenges, and implications of the temporary disruption of the health system and its response to this major public health crisis. We examine local governance capacity, performance in pandemic control, and the coordinated responses to COVID-19. Accordingly, we identify the challenges to the health system, including the imbalance in attention given to medical care versus health care, insufficient grassroots public health efforts and control capacity, and untimely information disclosure. It is strongly suggested that the government improve its cognitive ability and focus more attention on building and strengthening the emergency health system.Breathing patterns can be considered a vital sign providing health information. Infrared thermography is used to evaluate breathing patterns because it is non-invasive. Our study used not only sequence temperature data but also RGB images to gain breathing patterns in cattle. Mask R-CNN was used to detect the ROI (region of interest, nose) in the cattle RGB images. Mask segmentation from the ROI detection was applied to the corresponding temperature data. Finally, to visualize the breathing pattern, we calculated the temperature values in the ROI by averaging all temperature values in the ROI. The results in this study show 76% accuracy with Mask R-CNN in detecting cattle noses. With respect to the temperature calculation methods, the averaging method showed the most appropriate breathing pattern compared to other methods (maximum temperature in the ROI and integrating all temperature values in the ROI). Finally, we compared the breathing pattern from the averaging method and that from the thermal image observation and found them to be highly correlated (R2 = 0.91). This method is not labor-intensive, can handle big data, and is accurate. In addition, we expect that the characteristics of the method might enable the analysis of temperature data from various angles.The association between corals and photosynthetic dinoflagellates is one of the most well-known nutritional symbioses, but nowadays it is threatened by global changes. Nutritional exchanges are critical to understanding the performance of this symbiosis under stress conditions. Here, compound-specific δ15N and δ13C values of amino acids (δ15NAA and δ13CAA) were assessed in autotrophic, mixotrophic and heterotrophic holobionts as diagnostic tools to follow nutritional interactions between the partners. Contrary to what was expected, heterotrophy was mainly traced through the δ15N of the symbiont's amino acids (AAs), suggesting that symbionts directly profit from host heterotrophy. this website The trophic index (TP) ranged from 1.1 to 2.3 from autotrophic to heterotrophic symbionts. In addition, changes in TP across conditions were more significant in the symbionts than in the host. The similar δ13C-AAs signatures of host and symbionts further suggests that symbiont-derived photosynthates are the main source of carbon for AAs synthesis. Symbionts, therefore, appear to be a key component in the AAs biosynthetic pathways, and might, via this obligatory function, play an essential role in the capacity of corals to withstand environmental stress. These novel findings highlight important aspects of the nutritional exchanges in the coral-dinoflagellates symbiosis. In addition, they feature δ15NAA as a useful tool for studies regarding the nutritional exchanges within the coral-symbiodiniaceae symbiosis.
Type-1 cryoglobulinemia (CG) is a rare disease associated with B-cell lymphoproliferative disorder. Some viral infections, such as Epstein-Barr Virus infections, are known to cause malignant lymphoproliferation, like certain B-cell lymphomas. However, their role in the pathogenesis of chronic lymphocytic leukemia (CLL) is still debatable. Here, we report a unique case of Type-1 CG associated to a CLL transformation diagnosed in the course of a human metapneumovirus (hMPV) infection.
A 91-year-old man was initially hospitalized for delirium. In a context of febrile rhinorrhea, the diagnosis of hMPV infection was made by molecular assay (RT-PCR) on nasopharyngeal swab. Owing to hyperlymphocytosis that developed during the course of the infection and unexplained peripheral neuropathy, a type-1 IgG Kappa CG secondary to a CLL was diagnosed. The patient was not treated for the CLL because of Binet A stage classification and his poor physical condition.
We report the unique observation in the literature of CLL transformation and hMPV infection. We provide a mini review on the pivotal role of viruses in CLL pathophysiology.
We report the unique observation in the literature of CLL transformation and hMPV infection. We provide a mini review on the pivotal role of viruses in CLL pathophysiology.Cationic liposomes composed of 3-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-chol) and dioleoylphosphatidylethanolamine (DOPE) have previously been shown to have applications in gene delivery. Our study aims to explore the effects of inclusion of polyethylene glycol (PEG) and using different molar ratios of DC-chol/DOPE on size, zeta potential, cytotoxicity and DNA delivery of DC-chol/DOPE liposomes. Our results show that PEGylation reduces the cytotoxicity of DC-chol/DOPE liposomes, and, furthermore, PEGylated liposome-DNA lipoplexes are smaller in size and more uniform in size distribution than those that are not PEGylated. Additionally, toxicity against ovarian cancer SKOV-3 cells decreases with the amount of cationic DC-chol present in the formulation; however, decreased delivery of DNA to cellular nuclei is also observed. Transfection with the PEGylated liposomes was successfully demonstrated using plasmid DNA with a known functional outcome. These results offer further insight into physicochemical properties important for cationic liposomes as vehicles for DNA delivery and demonstrate the potential of PEGylated DC-chol/DOPE liposomes as systemic delivery carriers for DNA-mediated ovarian cancer therapy.