Howellhealy9102

Z Iurium Wiki

Verze z 30. 9. 2024, 17:26, kterou vytvořil Howellhealy9102 (diskuse | příspěvky) (Založena nová stránka s textem „Genetic mapping and whole-genome sequencing (WGS) revealed that these mutants have loss-of-function mutations in unc-89. Furthermore, we showed that the to…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Genetic mapping and whole-genome sequencing (WGS) revealed that these mutants have loss-of-function mutations in unc-89. Furthermore, we showed that the tolerance of unc-89(wf132) to EHEC relied on HLH-30/TFEB activation. These findings suggest that hlh-30 plays a key role in pathogen tolerance in C. elegans.Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.Somatic copy number alterations (SCNAs) serve as hallmarks of tumorigenesis and often result in deviations from one-to-one allelic ratios at heterozygous loci, leading to allelic imbalance (AI). The Cancer Genome Atlas (TCGA) reports SCNAs identified using a circular binary segmentation algorithm, providing segment mean copy number estimates from single-nucleotide polymorphism DNA microarray total intensities (log R ratio), but not allele-specific intensities ("B allele" frequencies) that inform of AI. Our approach provides more sensitive identification of SCNAs by modeling the "B allele" frequencies jointly, thereby bolstering the catalog of chromosomal alterations in this widely utilized resource. Here we present AI summaries for all 33 tumor sites in TCGA, including those induced by SCNAs and copy-neutral loss-of-heterozygosity (cnLOH). We identified AI in 94% of the tumors, higher than in previous reports. Recurrent events included deletions of 17p, 9q, 3p, amplifications of 8q, 1q, 7p, as well as mixed event types on 8p and 13q. We also observed both site-specific and pan-cancer (spanning 17p) cnLOH, patterns which have not been comprehensively characterized. The identification of such cnLOH events elucidates tumor suppressors and multi-hit pathways to carcinogenesis. We also contrast the landscapes inferred from AI- and total intensity-derived SCNAs and propose an automated procedure to improve and adjust SCNAs in TCGA for cases where high levels of aneuploidy obscured baseline intensity identification. Our findings support the exploration of additional methods for robust automated inference procedures and to aid empirical discoveries across TCGA.Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it's function and mechanisms of action are still largely unresolved. We therefore assessed the abundance of the domestic TSHR variant and possible genomic selection signatures in an extensive data set comprising multiple commercial and village chicken populations as well as wild-living extant members of the genus Gallus. Furthermore, by mean of extensive backcrossing we introgressed the wild-type TSHR variant from red junglefowl into domestic White Leghorn chickens and investigated gene expression, hormone levels, cold adaptation, and behavior in chickeowl and domestic chicken.To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.Polyploidy is an integral part of development and is associated with cellular stress, aging, and pathological conditions. The endocycle, comprised of successive rounds of G and S phases without mitosis, is widely employed to produce polyploid cells in plants and animals. In Drosophila, maintenance of the endocycle is dependent on E2F-governed oscillations of Cyclin E (CycE)-Cdk2 activity, which is known to be largely regulated at the level of transcription. In this study, we report an additional level of E2F-dependent control of CycE-Cdk2 activity during the endocycle. Genetic experiments revealed that an alternative isoform of Drosophila de2f1, dE2F1b, regulates the expression of the p27CIP/KIP-like Cdk inhibitor Dacapo (Dap). ARV-110 We provide evidence showing that dE2F1b-dependent Dap expression in endocycling tissues is necessary for setting proper CycE-Cdk2 activity. Furthermore, we demonstrate that dE2F1b is required for proliferating cell nuclear antigen expression that establishes a negative feedback loop in S phase.

Autoři článku: Howellhealy9102 (Booker Kemp)