Acevedobuus2119

Z Iurium Wiki

Verze z 30. 9. 2024, 15:41, kterou vytvořil Acevedobuus2119 (diskuse | příspěvky) (Založena nová stránka s textem „Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribut…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Transfection with Atf3 could recover the miR-27a-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-27a-3p may contribute to the development of vascular calcification by de-repression of ATF3.MicroRNAs (miRNAs) delivered by gastric cancer (GC)-secreted extracellular vesicles (GC-EVs) are associated with the immune escape in GC. Microarray analysis based on the GEO GSE112369 dataset identified the presence of poorly expressed CXXC finger protein 4 (CXXC4) in GC, which was validated in clinical samples of GC patients. Moreover, prediction based on TargetScan analysis demonstrated the putative miR-675-3p binding site in the 3' UTR region of CXXC4. Thereby, our study aims to determine the role of GC-EV-encapsulated miR-675-3p in GC. First, CXXC4 was found to be negatively correlated with programmed cell death 1 ligand 1 (PD-L1). The effects of mitogen-activated protein kinase (MAPK) signaling on GC were evaluated using activator of the MAPK pathway. The overexpression of CXXC4 led to a downregulated MAPK signaling pathway, thus decreasing PD-L1 expression to augment the proliferation and activation of T cells co-cultured with GC HGC-27 cells. GC-EV-encapsulated miR-675-3p negatively regulated the expression of its target gene CXXC4. GC-EV-encapsulated miR-675-3p increased PD-L1 expression to stimulate the immune escape in vitro and EV-encapsulated miR-675-3p accelerated cisplatin resistance in vivo. Collectively, the aforementioned findings present a mechanism in which EV-mediated miR-675-3p upregulates PD-L1 expression, promoting immune escape in GC.Apoptosis and calcification of endplate chondrocytes (EPCs) can exacerbate intervertebral disc degeneration (IVDD). Mesenchymal stem cell-derived exosomes (MSC-exosomes) are reported to have the therapeutic potential in IVDD. However, the effects and related mechanisms of MSC-exosomes on EPCs are still unclear. We aimed to investigate the role of MSC-exosomes on EPCs with a tert-butyl hydroperoxide (TBHP)-induced oxidative stress cell model and IVDD rat model. First, our study revealed that TBHP could result in apoptosis and calcification of EPCs, and MSC-exosomes could inhibit the detrimental effects. We also found that these protective effects were inhibited after miroRNA (miR)-31-5p levels were downregulated in MSC-exosomes. The target relationship between miR-31-5p and ATF6 was tested. miR-31-5p negatively regulated ATF6-related endoplasmic reticulum (ER) stress and inhibited apoptosis and calcification in EPCs. Our in vivo experiments indicated that sub-endplate injection of MSC-exosomes can ameliorate IVDD; however, after miR-31-5p levels were downregulated in MSC-exosomes, these protective effects were inhibited. In conclusion, MSC-exosomes reduced apoptosis and calcification in EPCs, and the underlying mechanism may be related to miR-31-5p/ATF6/ER stress pathway regulation.Long non-coding RNAs (lncRNAs) play an essential regulatory role in multiple cancers. check details However, the role of lncRNAs in papillary thyroid carcinoma (PTC) is still unknown. Here, GAS8-AS1, a novel lncRNA that is significantly downregulated in PTC, was selected for further investigation. The roles of GAS8-AS1 in PTC cells were verified by gain- and loss-of-function experiments. The functional mechanism of GAS8-AS1 on the microRNA (miR)-187-3p/ATG5 axis and miR-1343-3p/ATG7 axis in PTC cells was evaluated using bioinformatics analysis, luciferase reporter assay, Cell Counting Kit-8 (CCK-8) assay, immunohistochemistry analysis, transmission electron microscopy, and immunofluorescence. We found that GAS8-AS1 was downregulated in PTC tissues and cell lines. link2 In patients with PTC, low GAS8-AS1 expression was associated with higher tumor-node-metastasis (TNM) stage and lymph node metastasis (LNM). Functionally, GAS8-AS1 significantly promoted autophagy and inhibited PTC cell proliferation in vitro and promoted tumorigenesis in vivo. Mechanistically, GAS8-AS1 acted as a sponge of miR-187-3p and miR-1343-3p and upregulated ATG5 and ATG7 expression, respectively. link3 The transcription factor ATF2 regulated GAS8-AS1 by binding to the GAS8-AS1 promoter. In conclusion, upregulation of ATF2 activated GAS8-AS1-promoted autophagy of PTC cells by sponging oncogenic miR-187-3p and miR-1343-3p and upregulating the expression of ATG5 and ATG7, respectively, making GAS8-AS1 a potential prognostic biomarker and therapeutic target for PTC.Aberrant activation of nuclear factor κB (NF-κB)/RELA is often found in lung adenocarcinoma (LUAD). In this study, we determined that microRNA-3613-5p (miR-3613-5p) plays a crucial role in RELA-mediated post-transcriptional regulation of LUAD cell proliferation. Expression of miR-3613-5p in clinical LUAD specimens is associated with poor prognosis in LUAD. Upregulation of miR-3613-5p promotes LUAD cell proliferation in vitro and in vivo. Our results suggested a mechanism whereby miR-3613-5p expression is induced by RELA through its direct interaction with JUN, thereby stimulating the AKT/mitogen-activated protein kinase (MAPK) pathway by directly targeting NR5A2. In addition, we also found that phosphorylation of AKT1 and MAPK3/1 co-transactivates RELA, thus constituting a RELA/JUN/miR-3613-5p/NR5A2/AKT1/MAPK3/1 positive feedback loop, leading to persistent NF-κB activation. Our findings also revealed that miR-3613-5p plays an oncogenic role in LUAD by promoting cell proliferation and acting as a key regulator of the positive feedback loop underlying the link between the NF-κB/RELA and AKT/MAPK pathways.Nasopharyngeal carcinoma (NPC) is prevalent in East and Southeast Asia. In a previous study, Epstein-Barr virus (EBV)-miR-BART22 induces tumor metastasis and stemness and is significantly involved in NPC progression. In the present study, we observed that miR-4721 is induced by EBV-miR-BART22 through phosphatidylinositol 3-kinase (PI3K)/AKT/c-JUN/Sp1 signaling to promote its transcription. In a subsequent study, we observed that miR-4721 serves as a potential oncogenic factor promoting NPC cell cycle progression and cell proliferation in vitro and in vivo. Mechanism analysis indicated that miR-4721 directly targetes GSK3β and reduces its expression, which therefore elevates β-catenin intra-nuclear aggregation and activates its downstream cell cycle factors, including CCND1 and c-MYC. In clinical samples, miR-4721 and GSK3β are respectively observed to be upregulated and downregulated in NPC progression. Elevated expression of miR-4721 is positively associated with clinical progression and poor prognosis. Our study first demonstrated that miR-4721 as an oncogene is induced by EBV-miR-BART22 via modulating PI3K/AKT/c-JUN/Sp1 signaling to target GSK3β, which thus activates the WNT/β-catenin-stimulated cell cycle signal and enhances the tumorigenic capacity in NPC. miR-4721 may be a potential biomarker or therapeutic target in NPC treatment in the future.The study investigated the regulation of Smad2 by miR-18a and its role in preeclampsia (PE). Bioinformatics analysis showed that both Smad2 and Smad3 were the predicted targets for miR-18a. Mass spectrum analysis showed that two mature Smad2 isoforms existed in human placenta full length, Smad2(FL), and that lacking exon3, Smad2(Δexon3). The protein level of Smad2(FL), but not Smad2(Δexon3) or Smad3, was significantly increased in severe PE (sPE) placenta, which was inversely correlated with the level of miR-18a. Elevated Smad2(FL) phosphorylation level appeared in sPE placenta, and Smad2 was colocalized with miR-18a in various subtypes of trophoblasts in human placenta. Smad2(FL) was validated as the direct target of miR-18a in HTR8/SVneo cells. miR-18a enhanced trophoblast cell invasion, which was blocked by the overexpression of Smad2(FL). Furthermore, overexpression of miR-18a repressed Smad2 activation and the inhibition of trophoblast cell invasion by transforming growth factor-β (TGF-β). In conclusion, our results suggest that miR-18a inhibits the expression of Smad2(FL), but not Smad2(Δexon3) or Smad3, which can reduce TGF-β signaling, leading to the enhancement of trophoblast cell invasion. A lack of miR-18a, which results in the upregulation of Smad2(FL), contributes to the development of PE.Emerging evidence has suggested that circular RNAs (circRNAs) are involved in multiple physiological processes and participate in a variety of human diseases. However, the underlying biological function of circRNAs in pulmonary hypertension (PH) is still ambiguous. Herein, we investigated the implication and regulatory effect of a typical circRNA, CDR1as, in the pathological process of vascular calcification in PH. Human pulmonary artery smooth muscle cell (HPASMC) calcification was analyzed by western blotting, immunofluorescence, alizarin red S staining, alkaline phosphatase activity analysis, and calcium deposition quantification. CDR1as targets were identified by bioinformatics analysis and validated by dual-luciferase reporter and RNA antisense purification assays. We identified that CDR1as was upregulated in hypoxic conditions and promoted a phenotypic switch of HPASMCs from a contractile to an osteogenic phenotype. Moreover, microRNA (miR)-7-5p was shown to be a target of CDR1as, and calcium/calmodulin-dependent kinase II-delta (CAMK2D) and calponin 3 (CNN3) were suggested to be the putative target genes and regulated by CDR1as/miR-7-5p. The results showed that the CDR1as/miR-7-5p/CNN3 and CAMK2D regulatory axis mediates HPASMC osteoblastic differentiation and calcification induced by hypoxia. This evidence reveals an approach to the treatment of PH.The changes of microbiota in lungs could change interleukin-17a (IL-17a) expression by altering microRNAs (miRNAs) profile, thus contributing to the pathogenesis of chronic obstructive pulmonary disease (COPD). In this study, we aimed to study molecular mechanisms' underlying effect of microbiota imbalance on COPD deterioration. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze expression of miRNAs and IL-17a mRNA. ELISA was used to evaluate abundance of IL-17a in plasma, peripheral blood monocyte, and sputum of COPD mice and patients. Luciferase assay was performed to explore underlying molecular mechanisms. The expression of miR-122, miR-30a, and miR-99b were remarkably decreased in COPD mice, while the expression of IL-17a was notably increased in plasma, peripheral blood monocytes, and lung tissues of COPD mice. The levels of Lactobacillus/Moraxella and IL-17a expression were significantly enhanced in sputum of exacerbated COPD patients, along with notably decreased expression of miR-122 and miR-30a. Luciferase assay confirmed that miR-122 and miR-30a played an inhibitory role in IL-17a expression. We identified miR-122 and miR-30a as differentially expressed miRNAs in sputum and plasma of COPD patients in exacerbation-month12 group. Furthermore, downregulated miR-122 and miR-30a expression associated with microbiota imbalance may contribute to COPD deterioration by enhancing IL-17a production.Bromodomain-containing protein 4 (BRD4), the core component of transcriptional regulatory elements, plays a significant role in tumorigenesis and aggressiveness. However, the mechanisms regulating the functions of BRD4 in bladder cancer (BC) still remain elusive. Herein, we identify one exonic circular RNA (circRNA) generated from NR3C1 gene (circNR3C1) as a regulator of BRD4/C-myc complex. Our previous study indicated that BRD4 and C-myc promoter region form a complex, allowing C-myc to function as a transcription factor for BC progression. In the present study, mechanism studies reveal that circNR3C1 could interact with BRD4 protein, dissociating the formation of BRD4/C-myc complex. In vivo, ectopic expression of C-myc partly reverses the tumorigenesis of xenografts circNR3C1-induced in nude mice. Conclusively, these results demonstrate that circNR3C1 inhibits BC progression through acting as endogenous blocker of BRD4/C-myc complex.

Autoři článku: Acevedobuus2119 (Matthews Reed)