Jensbybay7515
The location, electronic structures, and geometries of the fluorophore and absorption and emission properties of 1 were investigated using density functional theory and natural transition orbital analyses. The limit of detection and the maximum adsorption capacity were 2.45 × 10-7 M and 542.81 mg g-1, respectively. Copyright © 2020 American Chemical Society.We present a numerical model to study the dynamic behaviors and heat conduction of freezing liquid droplets based on the MDPDE method (many-body dissipative particle dynamics with energy conservation configurations). In this model, the freezing processes involved in cooling, recalescence, and nucleation are considered. A new scaling method was developed to connect the mesoscopic MDPDE coefficients and macrothermal conductivity. The freezing of water droplets on cold surfaces with different wettabilities was simulated. Both the evolution of temperature and ice-liquid interface movement showed close agreement with the experimental data. We discuss the formation of a pointy tip on the top of an ice-drop and nucleation and growth during the recalescence stage. The rapid expansion of the recalescence region and the growth of the solid-phase region were calculated numerically, and this showed that the nuclei distribution of the two processes were completely different. The MDPDE model can not only predict the freezing time and shape deformation of ice-drops but also the nuclei formation and crystal growth during solidification. This study provides a useful tool for deicing material design. Copyright © 2020 American Chemical Society.Clathrate hydrates are ice-like compounds consisting of small gas molecules enclosed in water molecule cages. Baricitinib The formation of gas hydrate in oil and gas pipelines may result in flow assurance failure and serious safety and environmental concerns. Antiagglomeration is a promising method to mitigate gas hydrate risks in hydrocarbon flowlines. Morphological behavior of hydrates in the presence of antiagglomerants can provide important information on the antiagglomeration mechanisms. This study reports the visual observations of the morphology of hydrate formed with a water droplet immersed in cyclopentane with and without the presence of a hydrate antiagglomerant (AA). The effect of AA on the hydrate crystal growth was investigated. The AA exhibited a kinetic inhibition effect. With no AA, a faceted hydrate shell formed around the water droplet was observed. The subcooling can affect the rate of lateral growth. Higher subcooling facilitates hydrate growth. With the presence of 0.04 wt % AA, a hairy and porous morphology of hydrate was observed. At higher AA concentrations, a vertical type of growth after the lateral growth of the hydrate shell was observed. This is probably the first report of vertical growth of cyclopentane hydrate formed with a water droplet. A hypothesis is proposed to explain the vertical growth mechanism of the hydrate crystals. Copyright © 2020 American Chemical Society.Biosorption is an alternative procedure to remove metal ions from aqueous media using agricultural waste. In this work, the adsorption capacity and removal efficiency of agave bagasse (AB) toward Pb(II), Cd(II), and Zn(II) were analyzed. Parameters such as equilibrium pH, particle size, AB dosage, time, and initial metal ion concentration were discussed. The results showed that pH 5.5, 0.4 g ( less then 250 μm), and only 15 min of contact assured conditions for maximum adsorption capacity. The kinetic studies were fitted to the pseudo-second-order model, whereas the isotherms showed good agreement with the Langmuir model. AB has a higher affinity for Pb(II) over Cd(II) and Zn(II), and the maximum adsorption capacities were 93.14, 28.50, and 24.66 mg g-1, respectively. The results of the characterization evidenced two adsorption mechanisms. Scanning electron microscopy and X-ray diffraction displayed adsorption via the ion exchange mechanism by releasing Ca(II). The 13C cross-polarization mode with magic-angle spinning nuclear magnetic resonance analysis demonstrated a complexation mechanism by cellulose, hemicellulose, and lignin groups with Pb(II) and Cd(II), whereas the complexation is mainly observed by cellulose groups for Zn(II). AB is a good alternative for the removal of metals without prior thermal or chemical treatment, with rapid kinetics, suitable adsorption capacity, and high removal efficiency contributing to waste management. Copyright © 2020 American Chemical Society.The valence and conduction band offsets for both polar and nonpolar CuGaS2/CuAlSe2 and CuGaS2/ZnSe interfaces were studied here by the state-of-the-art first-principles calculations. Using the hybrid functional calculations, we show that the CuGaS2/CuAlSe2 and CuGaS2/ZnSe heterostructures in all interfaces form type II band alignment. The difference of valence and conduction band offsets is mainly due to lattice mismatch, generating stress in the interface and affecting the electronic properties of each material; meanwhile, the polarity configuration does not play an important role in these values. From the local density of states and the charge density, we can determine how the nature of the band alignments changes when the semiconductor conforms to each interface. This allows us to localize the electrons and holes at different sites of the interface. Copyright © 2020 American Chemical Society.The Eulerian-Eulerian two-fluid model (TFM) in conjunction with kinetic theory of granular flows (KTGF) was used for analyzing water vaporization and the semidry flue gas desulfurization process in a two-dimensional powder-particle spouted bed (PPSB). In an environment with high-temperature gas, desulfurization slurry is wrapped on the surface of moving particles and evaporated, along with the application of the user defined function (UDF) method to accomplish water heat and mass transfer by considering evaporation in the simulation process. The simulation results revealed that the best mass- and heat-transfer effect of each phase can be found in the outer annulus and the near spout region, both of which are also the main areas where water vaporization occurs. The rate of desulfurization products decreases with the increase in inlet gas temperature as the water vaporization rate increases. The volume fraction of desulfurization reaction products decreases with the increase in inlet flue gas temperature. Compared with other working conditions, the highest desulfurization efficiency reaches 84% when the inlet flue gas temperature is 480 K.