Gloverunderwood1919
g the decomposition and photo-activation of CO2 as a prototypical (photo-) catalytic reaction. Finally, I will discuss how the modification of the same material with subnanometric Ag5 clusters has converted it into a "reporter" of a surface polaron property as well as a novel two-dimensional polaronic material.Peak prioritization is one of the key steps in non-target screening of environmental samples to direct the identification efforts to relevant and important features. Occurrence of chemicals is sometimes a function of time and their presence in consecutive days (trend) reveals important aspects such as discharges from agricultural, industrial or domestic activities. This study presents a validated computational framework based on deep learning conventional neural network to classify trends of chemicals over 30 consecutive days of sampling in two sampling sites (upstream and downstream of a river). From trend analysis and factor analysis, the chemicals could be classified into periodic, spill, increasing, decreasing and false trend. The developed method was validated with list of 42 reference standards (target screening) and applied to samples. 25 compounds were selected by the deep learning and identified via non-target screening. Three classes of surfactants were identified for the first time in river water and two of them were never reported in the literature. Overall, 21 new homologous series of the newly identified surfactants were tentatively identified. The aquatic toxicity of the identified compounds was estimated by in silico tools and a few compounds along with their homologous series showed potential risk to aquatic environment.Defect engineering is crucial in the development of semiconductor catalyst activity. However, the influence of defect/vacancy density and states on catalysis remains vague. Thus, the optimized sulfur vacancy (SV) state is achieved among Fe-ZnS models (ZFS) via a chemical etching strategy for photocatalytic degradation (PD). As the SV concentration (ρSV) increases, the predominant state of vacancies changes from isolated defects-a state to a combination of a state and vacancy clusters-e state, as verified by positron annihilation and X-ray absorption fine structure spectra. However, the two types of defect states activated the intrinsic activity of the crystal via radically different mechanisms and exerted different degrees of influence on PD activity, as revealed by first-principles calculations and quantitative structure-activity relationship. Our results suggest that the SV activity is strongly influenced by its concentration in the ZFS crystal, while the vacancy concentration is not a control parameter for the PD activity, but a defect form. The underlying essence of atomic defects behavior affecting crystal catalytic activity at the atomic level is also revealed in this paper. Uncovering these structural relationships provide a theoretical basis for designing effective catalysts.The modification of clay minerals by exopolysaccharides (EPSs) may significantly increase their adsorption capacity. Therefore, this study focused on the impact of the EPS synthesised by the soil bacterium Rhizobium leguminosarum bv. trifolii on the adsorptive features of montmorillonite relative to two heavy metal ions (cadmium/Cd(II) and chromium/Cr(VI)) and a pesticide (carboxin). The characterization of montmorillonite was carried out using various methods X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy. The adsorption/desorption data were modelled using theoretical equations (Langmuir-Freundlich, Redlich-Peterson, etc.). The obtained results showed that EPS promoted the accumulation of heavy metals on the clay mineral and, simultaneously, contributed to a lower degree of their desorption. This resulted from complexation between the biopolymer and the Cd(II)/Cr(VI) ions. After montmorillonite modification with 100 mg/L EPS, the maximum noted growth in Cd(II) adsorption was 26.10%, whereas it was 20.30% for Cr(VI). The adsorbed amounts of Cd(II) and Cr(VI) were then 24.24 and 14.45 mg/g, respectively. In the case of carboxin, the EPS effect on its adsorption/desorption rates was opposite - its adsorption level decreasing by 10.80%, was 0.27 mg/g. Thus, the presence of EPS-producing bacteria could reduce the bioavailability of the heavy metals, but not of the selected pesticide.Due to its abundance and role as a micronutrient for plants iron (Fe) is rarely perceived as a contaminant. However, in redox active environments, Fe bioavailability increases sharply representing an environmental risk. In this study, a recent catastrophic mining dam failure is used as a field framework to evaluate the role of wetland plants on Fe biogeochemistry and assess their potential for phytoremediation programs. To achieve these objectives, a Fe geochemical partitioning and the concentration of Fe in different plant compartments (iron plaque on root surfaces, roots, and leaves) were determined in two sites vegetated by different wetland species. Soils exhibited contrasting Fe biogeochemical dynamics. Lower pseudo-total contents and more reactive Fe oxides were observed in the soil vegetated by Typha domingensis. Iron plaque was present on both species but more concentrated in Fe in T. domingensis. T. domingensis showed Fe shoot concentrations (3874 mg kg-1) 10-fold higher than in Hibiscus tiliaceus, which prevented Fe absorption through iron plaque formation and root accumulation. In conclusion, contrasting biogeochemical effects on Fe (e.g., rhizosphere acidification) lead to different phytoremediation abilities. T. domingensis showed a high potential for Fe phytoremediation on sites affected by Fe-enriched wastes and should be tested in assisted phytoremediation approaches.A rapid and accurate detection method is needed for the quantitation of ochratoxin A in agricultural products due to its high toxicity. A microparticle-counting immunosensor based on polydopamine nanoparticle-mediated click chemistry was established for the highly-sensitive detection of ochratoxin A. Polydopamine nanoparticles with good biocompatibility and a strong metal-chelating ability were synthesized and conjugated with the antibody. The Coupled compounds were then used as an immune carrier to change the Cu2+ concentration via an immuno-reaction. Some of the remaining Cu2+ ions were reduced to Cu+ ions, which caused azide-polystyrene microspheres and alkyne-polystyrene microspheres to aggregate via a Cu+ ion-mediated click reaction. Particle counting was used to distinguish changes in the sizes of the polystyrene microspheres from dispersed to aggregated to detect ochratoxin A. It showed a wide linear detection range of 0.5-800 ng/mL, and a detection limit of 0.2 ng/mL. This assay provides an attractive analytical tool for the accurate detection of trace targets in complex samples.Among the chlorinated aliphatic hydrocarbons, 1,2-dichloroethane (1,2-DCA) is widely used for the synthesis of vinyl chloride monomers. Despite the high demand for 1,2-DCA, it poses a risk to the environment because it is persistent and carcinogenic. Therefore, in this study, several reagents (dithionite, hydrosulfide, sulfite, persulfate, sulfate radicals, and hydroxyl radicals) were evaluated for the degradation of 1,2-DCA. Among these, the hydroxyl radicals generated by the Fenton reaction were the most suitable oxidant, decomposing 92% of 1,2-DCA. Chloride, one of the final oxidized products, was observed, which supported the oxidation reaction. Moreover, with an increasing concentration of hydroxyl radicals, the degradation of 1,2-DCA increased. Furthermore, sufficient amounts of hydrogen peroxide were more important than Fe(II) in the decomposition of 1,2-DCA. The radical reaction can generate larger molecules via the degradation of 1,2-DCA, which are degraded over time. The applicability of Fenton oxidation was evaluated using real 1,2-DCA-contaminated groundwater. Although the degradation of target contaminant was lowered due to the alkaline pH and the presence of chloride and bicarbonate ions in groundwater, the Fenton reaction was still efficient to oxidize 1,2-DCA. These results indicate that Fenton oxidation is an effective technique for the treatment of 1,2-DCA in contaminated groundwater.To understand the adsorption mechanisms of Cd2+ by oxidant-modified biochar (OMB) derived from Platanus orientalis Linn (POL) leaves, batch adsorption experiments and characterization were carried out. The results showed that, KMnO4-modified biochar (MBC) could more effectively remove Cd2+ from aqueous solution than H2O-, H2O2-, and K2Cr2O7-modified biochar (WBC, HBC and PBC, respectively). The highest removal efficiency was 98.57%, which was achieved by the addition of 2 g L-1 MBC at pH 6.0. According to the Langmuir fitting parameters, the maximum adsorption capacity for MBC was 52.5 mg g-1 at 30 ℃, which was twice as high as that for original biochar. MBC had the largest specific surface area with many particles distributed on the surface before and after adsorption, which were confirmed to be MnOx by XPS analysis. The complexation with MnOx was the main mechanism. Besides, O-containing groups complexation, precipitation, cation-π intraction, and ion exchange also participated in the adsorption. However, WBC, HBC and PBC did not achieve ideal removal effects, and their stability was inferior. CP21 This could be attributed to the weakening of ion exchange and precipitation. This study not only demonstrates the potential of MBC, but also provides insight into strategies for the utilization of waste resources.Dyes are well known for their hazardous impacts on public health and the environment. Dye removal using monolithic adsorbents is an attractive approach for industrial applications and process design owing to their utilization in both static and dynamic adsorption experiments. In the present work, polyethyleneimine (PEI) based macroporous monolithic sponge (S100) was engineered by ice-templating method and used as an adsorbent. Both batch and continuous operations for dye removal were studied. The effect of various parameters such as pH, adsorbent amount, flow rate, influent dye concentration, and adsorbent bed height on adsorption performance of S100 was studied and modelled using Langmuir/Freundlich isotherms for static operations and Adam-Bohart/Thomas model in packed-bed column experiments. Under optimum conditions, the adsorbent showed a remarkably higher adsorption capacity towards CR (1666.67 mg/g), which is considerably higher than most PEI-based adsorbents. Amine groups in S100 offered exceptional selectivity for anionic Congo red (CR) against cationic Methylene blue (MB) dye (separation factor of 208 and 87 in absence and presence of sodium chloride, respectively). It can be easily regenerated in alkaline medium without a significant loss in percent adsorption capacity and shows good thermal and mechanical stability. Notably, in column studies, a relatively smaller percentage of unused bed height (32.3%) was observed with higher dye uptake for 16 mg S100 at flow rate 10 mL/h and inlet concentration 300 mg/L. Thus, the adsorbent displays an outstanding physiochemical characteristic, excellent selectivity for anionic dye, ease of regeneration and high adsorption performance in both batch and continuous studies.