Petersonpontoppidan4501

Z Iurium Wiki

Verze z 30. 9. 2024, 13:18, kterou vytvořil Petersonpontoppidan4501 (diskuse | příspěvky) (Založena nová stránka s textem „This work investigated the potential application of roll-to-roll printed PEDOTPSS on an ITO/PET substrate using Pb2+ containing 0.1 M NaCl aqueous solution…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This work investigated the potential application of roll-to-roll printed PEDOTPSS on an ITO/PET substrate using Pb2+ containing 0.1 M NaCl aqueous solution for a supercapattery. The PEDOTPSS/ITO/PET electrode achieved 2.2 μAh cm-2 (46.5 mAh g-1) in 0.1 M NaCl and 10 μAh cm-2 (216.8 mAh g-1) in 2 mM Pb2+/0.1 M NaCl at a current density of 0.2 mA cm-2 (4.34 A g-1). The electrode also shows good cyclic performance that retains 63% of its initial capacitance after 1000 charge-discharge cycles. A device operating at a high voltage of 1.8 V was built using PEDOTPSS/ITO/PET in aqueous electrolyte. The energy density of the symmetric PEDOTPSS/ITO/PET device is 6.2 Wh kg-1 in 0.1 M NaCl and is improved to 11 Wh kg-1 in 3 mM Pb2+/0.1 M NaCl.The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.Lead halide perovskite semiconductors providing record efficiencies of solar cells have usually mixed compositions doped in A- and X-sites to enhance the phase stability. The cubic form of formamidinium (FA) lead iodide reveals excellent opto-electronic properties but transforms at room temperature (RT) into a hexagonal structure which does not effectively absorb visible light. This metastable form and the mechanism of its stabilization by Cs+ and Br- incorporation are poorly characterized and insufficiently understood. We report here the vibrational properties of cubic FAPbI3 investigated by DFT calculations on phonon frequencies and intensities, and micro-Raman spectroscopy. The effects of Cs+ and Br- partial substitution are discussed. We support our results with the study of FAPbBr3 which expands the identification of vibrational modes to the previously unpublished low frequency region ( less then 500 cm-1). Our results show that the incorporation of Cs+ and Br- leads to the coupling of the displacement of the A-site components and weakens the bonds between FA+ and the PbX6 octahedra. We suggest that the enhancement of α-FAPbI3 stability can be a product of the release of tensile stresses in the Pb-X bond, which is reflected in a red-shift of the low frequency region of the Raman spectrum ( less then 200 cm-1).We report that 3-D printed scaffold channel size can direct bone marrow derived stem cell differentiation. Treatment of articular cartilage trauma injuries, such as microfracture surgery, have limited success because durability is limited as fibrocartilage forms. A scaffold-assisted approach, combining microfracture with biomaterials has potential if the scaffold can promote articular cartilage production and share load with cartilage. Here, we investigated human bone marrow derived stromal cell (hBMSC) differentiation in vitro in 3-D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) hybrid scaffolds with specific channel sizes. Channel widths of ∼230 μm (210 ± 22 μm mean strut size, 42.4 ± 3.9% porosity) provoked hBMSC differentiation down a chondrogenic path, with collagen Type II matrix prevalent, indicative of hyaline cartilage. When pores were larger (∼500 μm, 229 ± 29 μm mean strut size, 63.8 ± 1.6% porosity) collagen Type I was dominant, indicating fibrocartilage. There was less matrix and voids in smaller channels (∼100 μm, 218 ± 28 μm mean strut size, 31.2 ± 2.9% porosity). Our findings suggest that a 200-250 μm pore channel width, in combination with the surface chemistry and stiffness of the scaffold, is optimal for cell-cell interactions to promote chondrogenic differentiation and enable the chondrocytes to maintain their phenotype.A short peptide based hydrogel exhibits aqueous insolubility, thixotropy and efficient light induced syneresis. Upon irradiation with UV light, the hydrogel shrinks and expells ∼50% of the solvent. Syneresis is caused by light-triggered trans-cis isomerisation of an azobenzene moiety in the peptide derivative. This expulsion of solvent can be effectively exploited in the removal of low molecular weight contaminants in water.The efficiency of drug delivery and bioavailability to tumor cells are crucial for effective cancer chemotherapy. Herein, a doxorubicin (DOX) encapsulated lysolipid-based thermosensitive liposome decorated with cRGD peptide (RTSL) is conjugated on the surface of an IR780-loaded microbubble (IMB) to synthesize RTSL-IMBs. Sequentially taking advantage of acoustic-assisted early extravasation and thermo-triggered interstitium ultrafast drug release, RTSL-IMBs combine with ultrasound (US) and laser irradiation can advance drug delivery and bioavailability. In vitro experiments demonstrate that RTSL-IMBs associated with a two-step protocol (subsequently US irradiation for 1 min and laser irradiation for 5 min) can dramatically enhance the cellular uptake and bioavailability of DOX. HIF cancer In vivo fluorescence imaging studies reveal that the combination of RTSL-IMBs and US shows a 2.8-fold intratumoral drug accumulation increase at 0.5 h post-injection, while it will take 48 h to reach the same level of intratumoral drug accumulation for the RTSL-IMB group alone. Interestingly, the following localized application of a laser can further increase drug accumulation and slow tumor clearance. Histological analysis demonstrates that the combinational RTSL-IMBs, US and laser significantly improve the drug penetration distance and delivery efficiency in the tumor core. In this study, the acoustic/thermo-responsive hybrid system shows potential for advancing DOX chemotherapy in breast cancer cell MCF-7 xenograft nude mice.

Autoři článku: Petersonpontoppidan4501 (Stefansen Chaney)