Thomassenbirch7123

Z Iurium Wiki

Verze z 30. 9. 2024, 12:49, kterou vytvořil Thomassenbirch7123 (diskuse | příspěvky) (Založena nová stránka s textem „American foulbrood is a devastating disease of honey bee, causing economic loss in the beekeeping industry. The disease mainly causes reduction in honey be…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

American foulbrood is a devastating disease of honey bee, causing economic loss in the beekeeping industry. The disease mainly causes reduction in honey bee populations which negatively affect the honey bee's major role as natural pollinators of significant crops and wildflowers. Thus, it is crucial to develop safe efficient strategies to control the disease and to improve bee colony health. Using lactic acid bacteria (LAB) as an alternative to chemical treatments is a promising novel technique for tackling honey bee diseases and improving their immunity. The endogenous LAB isolates were recovered from honey bee gut samples collected from different apiaries in two Egyptian governorates and screened for antagonistic activities against Paenibacillus larvae (pathogen of AFB disease). The results showed that 53.3% of tested LAB isolates (n = 120) exhibited antagonistic activities against P. larvae. The minimum inhibitory concentration and minimum bactericidal concentration of the most potent LAB isolate (with an inhibition zone of 44 mm) were 100 and 125 µL/mL, respectively. 16S rRNA sequencing identified the most potent isolate as Fructobacillus fructosus HI-1. The bioactive metabolites of F. fructosus were extracted with ethyl acetate and fractionated on thin-layer chromatography (TLC); also, bioactive fractions were detected. Heptyl 2-methylbutyrate, di-isobutyl phthalate, D-turanose, heptakis (trimethylsilyl), di-isooctyl phthalate, and hyodeoxycholic acid compounds were identified in the bioactive fractions. The result explores the promising administration of probiotic metabolites to control honey bee AFB disease, as a natural tool to substitute antibiotics and chemicals in disease-controlling strategies.Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.

Salicylic acid (SA) is an important regulator of genes involved in plant defense and pathogen-triggered systemic acquired resistance (SAR). Coconut is an important crop affected by several pathogens. Reported evidence suggests SA involvement in defense responses, including SAR in coconut.

To identified differentially expressed genes in leaf and root tissues of coconut plantlets, as a result of SA, that might be involved in coconut defense responses.

Comparative transcriptomic analysis by RNA-Seq of leaf and root tissues from in vitro coconut plantlets unexposed and exposed to SA 2.5mM for 48h. find more And in silico validation of gene expression by qRT-PCR.

We identified 4615 and 3940 differentially expressed unigenes (DEUs) in leaf and root tissues respectively. Our GO analysis showed functional categories related to the induction of defense responses, such as "systemic acquired resistance" and highly enriched hormone categories, such as abscisic acid. The most abundant KEGG pathway in our results was "Biosynthesis of antibiotics". Our findings support that exogenous application of SA to plantlets induced the activation of PRs, RGAs, ICS2, NLTP2, PER4, TRXM and some WRKYs mediated by NPR1-dependent pathways. Also, we found DEUs, such as BZR1, HSL1, and WHY2 that support that SA could regulate defense-related genes through NPR1-independent pathways.

The present study of massive data analysis carried out on coconut plantlets exposed to SA, generates valuable information that increases our understanding of defense molecular mechanisms in coconut and open new venues for research for the improvement of management of coconut diseases.

The present study of massive data analysis carried out on coconut plantlets exposed to SA, generates valuable information that increases our understanding of defense molecular mechanisms in coconut and open new venues for research for the improvement of management of coconut diseases.Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines.

Autoři článku: Thomassenbirch7123 (Pallesen Fletcher)