Damborgkrarup8988

Z Iurium Wiki

Verze z 30. 9. 2024, 10:34, kterou vytvořil Damborgkrarup8988 (diskuse | příspěvky) (Založena nová stránka s textem „More importantly, transmission electron microscopy and mass spectra indicated the further bacteriostatic mechanism of nanoparticles. Meanwhile, the nanopar…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

More importantly, transmission electron microscopy and mass spectra indicated the further bacteriostatic mechanism of nanoparticles. Meanwhile, the nanoparticles had well biocompatibility and safety. Current study will open up new prospect that the design of self-assemblies between active phytochemicals can be originated from traditional Chinese medicine combination.Atherosclerosis (AS) is the leading cause of heart attacks, stroke, and peripheral vascular disease. Berberine (BBR), a botanical medicine, has diversified anti-atherosclerotic effects but with poor absorption. The aim of this study was to develop an effective BBR-entrapped nano-system for treating AS in high-fat diet (HFD)-fed Apoe(-/-) mice, and also explore the possible underlying mechanisms involved. Three d-α-tocopherol polyethylene glycol (PEG) succinate (TPGS) analogues with different PEG chain lengths were synthesized to formulate BBR-entrapped micelles. HFD-fed Apoe(-/-) mice were administered with optimized formula (BBR, 100 mg/kg/day) orally for 5 months. The artery plaque onset and related metabolic disorders were evaluated, and the underlying mechanisms were studied. Our data showed that, BT1500M increased BBR deposition in liver and adipose by 107.6% and 172.3%, respectively. In the Apoe(-/-) mice, BT1500M ameliorated HFD-induced hyperlipidemia and lipid accumulation in liver and adipose. BT1500M also suppressed HFD-induced chronic inflammation as evidenced by the reduced liver and adipose levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β); and decreased plasma level of TNF-α, IL-6, IL-1β, interferon-γ (IFN-γ), monocyte chemotactic protein (MCP), and macrophage inflammatory factor (MIP). The mechanism study showed that BT1500M changed Ampk and Nf-κb gene expression, and interrupted a crosstalk process between adipocytes and macrophages. Further investigation proved that BT1500M decreased endothelial lesion and subsequent macrophage activation, cytokines release, as well as cholesteryl ester gathering in the aortic arch, resulting in ameliorated artery plaque build-up. Our results provide a practical strategy for treating AS using a BBR-entrapped nano-system.Trabeculectomy is the mainstay of surgical glaucoma treatment, while the success rate was unsatisfying due to postoperative scarring of the filtering blebs. RG108 solubility dmso Clinical countermeasures for scar prevention are intraoperative intervention or repeated subconjunctival injections. Herein, we designed a co-delivery system capable of transporting fluorouracil and anti-TGF-β2 oligonucleotide to synergistically inhibit fibroblast proliferation via topical instillation. This co-delivery system was built based on a cationic dendrimer core (PAMAM), which encapsulated fluorouracil within hydrophobic cavity and condensed oligonucleotide with surface amino groups, and was further modified with hyaluronic acid and cell-penetrating peptide penetratin. The co-delivery system was self-assembled into nanoscale complexes with increased cellular uptake and enabled efficient inhibition on proliferation of fibroblast cells. In vivo studies on rabbit trabeculectomy models further confirmed the anti-fibrosis efficiency of the complexes, which prolonged survival time of filtering blebs and maintained their height and extent during wound healing process, exhibiting an equivalent effect on scar prevention compared to intraoperative infiltration with fluorouracil. Qualitative observation by immunohistochemistry staining and quantitative analysis by Western blotting both suggested that TGF-β2 expression was inhibited by the co-delivery complexes. link2 Our study provided a potential approach promising to guarantee success rate of trabeculectomy and prolong survival time of filtering blebs.A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.The combination of paclitaxel (PTX) and doxorubicin (DOX) has been widely used in the clinic. However, it remains unsatisfied due to the generation of severe toxicity. Previously, we have successfully synthesized a prodrug PTX-S-DOX (PSD). The prodrug displayed comparable in vitro cytotoxicity compared with the mixture of free PTX and DOX. Thus, we speculated that it could be promising to improve the anti-cancer effect and reduce adverse effects by improving the pharmacokinetics behavior of PSD and enhancing tumor accumulation. Due to the fact that copper ions (Cu2+) could coordinate with the anthracene nucleus of DOX, we speculate that the prodrug PSD could be actively loaded into liposomes by Cu2+ gradient. Hence, we designed a remote loading liposomal formulation of PSD (PSD LPs) for combination chemotherapy. The prepared PSD LPs displayed extended blood circulation, improved tumor accumulation, and more significant anti-tumor efficacy compared with PSD NPs. Furthermore, PSD LPs exhibited reduced cardiotoxicity and kidney damage compared with the physical mixture of Taxol and Doxil, indicating better safety. Therefore, this novel nano-platform provides a strategy to deliver doxorubicin with other poorly soluble antineoplastic drugs for combination therapy with high efficacy and low toxicity.Photodynamic therapy (PDT) has been widely used in cancer treatment. However, hypoxia in most solid tumors seriously restricts the efficacy of PDT. To improve the hypoxic microenvironment, we designed a novel mesoporous platinum (mPt) nanoplatform to catalyze hydrogen peroxide (H2O2) within the tumor cells in situ without an extra enzyme. During the fabrication, the carboxy terminus of the photosensitizer chlorin e6 (Ce6) was connected to the amino terminus of the bifunctional mercaptoaminopolyglycol (SH-PEG-NH2) by a condensation reaction, and then PEG-Ce6 was modified onto the mPt moiety via the mercapto terminal of SH-PEG-NH2. Material, cellular and animal experiments demonstrated that Pt@PEG-Ce6 catalyzed H2O2 to produce oxygen (O2) and that Ce6 transformed O2 to generate reactive oxygen species (ROS) upon laser irradiation. The Pt@PEG-Ce6 nanoplatform with uniform diameter presented good biocompatibility and efficient tumor accumulation. link3 Due to the high atomic number and good near-infrared absorption for Pt, this Pt@PEG-Ce6 nanoplatform showed computed tomography (CT) and photoacoustic (PA) dual-mode imaging ability, thus providing an important tool for monitoring the tumor hypoxic microenvironment. Moreover, the Pt@PEG-Ce6 nanoplatform reduced the expression of hypoxia-inducible factor-1α (HIF-1α) and programmed death-1 (PD-1) in tumors, discussing the relationship between hypoxia, PD-1, and PDT for the first time.It is essential to develop new carriers for laryngeal drug delivery in light of the lack of therapy in laryngeal related diseases. When the inhalable micron-sized crystals of γ-cyclodextrin metal-organic framework (CD-MOF) was utilized as dry powder inhalers (DPIs) carrier with high fine particle fraction (FPF), it was found in this research that the encapsulation of a glycoside compound, namely, scutellarin (SCU) in CD-MOF could significantly enhance its laryngeal deposition. Firstly, SCU loading into CD-MOF was optimized by incubation. Then, a series of characterizations were carried out to elucidate the mechanisms of drug loading. Finally, the laryngeal deposition rate of CD-MOF was 57.72 ± 2.19% improved by SCU, about two times higher than that of CD-MOF, when it was determined by Next Generation Impactor (NGI) at 65 L/min. As a proof of concept, pharyngolaryngitis therapeutic agent dexamethasone (DEX) had improved laryngeal deposition after being co-encapsulated with SCU in CD-MOF. The molecular simulation demonstrated the configuration of SCU in CD-MOF and its contribution to the free energy of the SCU@CD-MOF, which defined the enhanced laryngeal anchoring. In conclusion, the glycosides-like SCU could effectively enhance the anchoring of CD-MOF particles to the larynx to facilitate the treatment of laryngeal diseases.Shenmai injection (SMI) is a well-defined herbal preparation that is widely and clinically used as an adjuvant therapy for cancer. Previously, we found that SMI synergistically enhanced the activity of chemotherapy on colorectal cancer by promoting the distribution of drugs in xenograft tumors. However, the underlying mechanisms and bioactive constituents remained unknown. In the present work, the regulatory effects of SMI on tumor vasculature were determined, and the potential anti-angiogenic components targeting tumor endothelial cells (TECs) were identified. Multidimensional pharmacokinetic profiles of ginsenosides in plasma, subcutaneous tumors, and TECs were investigated. The results showed that the concentrations of protopanaxadiol-type (PPD) ginsenosides (Rb1, Rb2/Rb3, Rc, and Rd) in both plasma and tumors, were higher than those of protopanaxatriol-type (Rg1 and Re) and oleanane-type (Ro) ginsenosides. Among PPD-type ginsenosides, Rd exhibited the greatest concentrations in tumors and TECs after repeated injection. In vivo bioactivity results showed that Rd suppressed neovascularization in tumors, normalized the structure of tumor vessels, and improved the anti-tumor effect of 5-fluorouracil (5FU) in xenograft mice. Furthermore, Rd inhibited the migration and tube formation capacity of endothelial cells in vitro. In conclusion, Rd may be an important active form to exert the anti-angiogenic effect on tumor after SMI treatment.Meplazumab is an anti-CD147 humanized IgG2 antibody. The purpose of this study was to characterize the nonclinical safety, tolerance and efficacy evaluation of meplazumab treating chloroquine resistant Plasmodium falciparum. Meplazumab was well tolerated in repeat-dose toxicology studies in cynomolgus monkeys. No observed adverse effect level was 12 mg/kg. No difference between genders in the primary toxicokinetic parameters after repeat intravenous injection of meplazumab. No increased levels of drug exposure and drug accumulation were observed in different gender and dose groups. Meplazumab had a low cross-reactivity rate in various tissues and did not cause hemolysis or aggregation of red blood cells. The biodistribution and excretion results indicated that meplazumab was mainly distributed in the plasma, whole blood, and hemocytes, and excreted in the urine. Moreover, meplazumab effectively inhibited the parasites from invading erythrocytes in humanized mice in a time-dependent manner and the efficacy is superior to that of chloroquine.

Autoři článku: Damborgkrarup8988 (Roman Castro)