Larsenklausen9954
The presence of CS also progressively increased the percentage of adsorbed proteins at the interface, and decreased the surface coverage of proteins at the interface. The high freeze-thaw stability of such HIPEs might be unrelated to the ice crystal formation during the freezing, and was more likely associated with the strong steric repulsion contributed to the adsorbed CS molecules between different droplets. Hedgehog antagonist The results indicated that the complexation of heated SPI and CS could provide an effective strategy to facilely fabricate outstanding freeze-thaw-stability HI PEs as potential mayonnaise replacers.As a high-value processed aquatic product, wet-aged tuna has gradually become a popular food, but its lipidomics characteristics during the aging process have not been investigated. Herein, the lipidomics phenotypic data of tuna at different wet-aging stages were acquired using iKnife rapid evaporative ionization mass spectrometry, in which the dominant lipid components, including fatty acid (FA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI), were structurally identified. Principal component analysis, permutation test, heatmap, and circos plot analysis were performed to characterize lipids in wet-aged tuna, among which FAC181, docosahexaenoic acid (DHA), and PIC180/226 were the most contributing components for determining the wet-aging stage of tuna. The results indicated that iKnife-REIMS is accurate (86.5%), reliable, and could be used in the real-time detection of tuna meat during different wet-aging stages.Emulsion gels are solidified emulsions, which can be used for delivery of both hydrophilic and lipophilic substances. In this research, at first fish oil-in-water (O/W; 10% w/w) emulsions were prepared through the spontaneous emulsification technique. As emulsifier, a blend of the small-molecule surfactant tween 80, and either low-acyl (LaG) or high-acyl (HaG) gellan was used. For making fully stable (100% stability index) emulsions, a 10-fold higher concentration of LaG than HaG in the emulsion aqueous phase was required. The difference in gellan concentration resulted in a bigger mean drop size, as well as lesser consistency coefficient and yield stress for HaG emulsion than LaG emulsion. Subsequently, the fully stable HaG and LaG emulsions were gelled by CaCl2 addition. LaG emulsion gel was self-supporting and had a dense microstructure (as observed by electron microscopy), whereas HaG emulsion gel was not self-supporting. Loading lipase into the emulsions before ionotropic gelation did not lead to unacceptable acid values for fish oil during the emulsion gels storage. When the lipase-loaded fish O/W emulsion gels were immersed in an acid solution which imitated the gastric fluid (yet without digestive enzymes) oil droplets flocculated (as observed by confocal microscopy). The acid immersion also increased the dynamic moduli of the gels. Lipase was not released into the surrounding acid solution from LaG emulsion gel. A subsequent immersion within an alkaline solution imitating the small intestine fluid (yet without digestive enzymes) reduced the dynamic moduli of both kinds of emulsion gels. The alkaline immersion also caused extensive crack propagation in LaG emulsion gel network, which was found associated with diminished value of tan δ (G/G') as an index of gel energy dissipation. Lipase was released form LaG emulsion gel into the alkaline solution, however, it took a remarkable period of time to begin.Despite mare's milk being highly nutritious and beneficial to human health, the effects of different dietary regimens on the lipid profile of mare's milk remain to be completely understood. Herein we employed targeted multiple reaction monitoring-based lipidomics with ultra-high performance liquid chromatography-quadrupole time-of-flight-mass spectrometry to compare the milk lipid profiles of mares fed pasture grass (P), corn stover and concentrate (H), or cornsilage and concentrate (S). Overall, 461 lipids belonging to 17 subclasses were identified; 261 significantly different lipids were identified on applying the following criteria false discovery rate-adjusted P H. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using differential lipids led to the identification of 34, 32, and 31 metabolic pathways on pairwise comparisons between the P and H, P and S, and S and H groups, respectively. The milk of mares in the P group showed significantly higher levels of specific lipids, including triacylglycerols, phosphatidylcholines, and phosphatidylserines, which are known to participate in polyunsaturated fatty acid and lipid digestion and absorption-related metabolic pathways. Altogether, our data provide comprehensive insights into the correlations between feeding systems and quality of mare's milk in terms of bioactive profile.Flavor is an important factor affecting the sensory of pomegranate and its products, which easily lose its freshness during processing and storage, but the biosynthesis of flavor-associated compounds is poorly understood until now. In this study, combining metabolome and transcriptome, flavor-associated attributes and volatile compounds of Tunisian pomegranate arils from 7 Chinese regions were studied. Depending on the different planting areas, there were significant differences in the content of sugars, organic acids and vitamin C. A total of 40 volatile compounds were characterized from all samples, of which 13 volatile compounds were common to all samples. There were 4 compounds showed higher contents in all samples, including 1-hexanol, (Z)-3-hexen-1-ol, α-terpineol, and 2,4-di-tert-butyl phenol. According to the Kyoto Encyclopedia of Genes and Genomes pathway analysis, 5 differential accumulated metabolites, including palmitic acid, octanoic acid, lauric acid, decanoic acid, and myristic acid, were significantly enriched in the fatty acid biosynthesis for all samples. Weighted gene co-expression network analysis revealed that 42 candidate flavor-associated differentially expressed genes and 9 transcription factors mainly located in 3 key modules. Hexanoic acid was an important metabolite, which was significantly correlated with 38 differentially expressed genes. Generally, complex regulatory networks were constructed in the study to identify structural genes and transcription factors which regulate the metabolism of volatile compounds in pomegranate. Our results provided new insights for understanding the difference in flavor biosynthesis and regulatory network of pomegranate arils.Maize is among the crops containing carotenoids that are easily converted to vitamin A and have an enormous influence on consumers' health. Principally maize has high calories and proteins but has less number of other micronutrients such as vitamin A. Societies that use maize as their main and sole staple food are likely to be affected by vitamin A deficiency. Thus, development and production of maize varieties rich in micronutrients and vitamin A are important for improved health. This study characterized 5 carotenoid components in maize genotypes grown in Tanzania as a strategy for improving vitamin A content in maize. The study involved maize landraces, commercial or elite varieties, and inbred lines in determining their potential for provitamin A breeding programs for nutrition improvement. The study found that mean concentration of important carotenoid components, i.e., alpha carotene (AC), beta-carotene (BC), beta-cryptoxanthin (BCX), lutein (LU), zeaxanthin (ZX), provitamin A (ProVA), non-provitamin A s. The current study found an appreciable amount of ProVA in studied materials, including maize landraces, commercial yellow varieties, and CIMMYT lines. The concentration of ProVA and retinol determined in studied maize genotypes were below 15 µg/g a daily vitamin A requirement, thus based on the current ProVA and retinol status it is difficult to meet Vitamin A requirement. Therefore, these maize genotypes with promising levels of carotenoid components are potential breeding materials that can be used in maize provitamin A biofortification program for improved food nutrition and livelihoods in Tanzania.Microbial species are inherently variable, which is reflected in intraspecies genotypic and phenotypic differences. Strain-to-strain variation gives rise to variability in stress resistance and plays a crucial role in food safety and food quality. Here, strain variability in heat resistance of asexual spores (conidia) of the fungal species Aspergillus niger, Penicillium roqueforti and Paecilomyces variotii was quantified and compared to bacterial variability found in the literature. After heat treatment, a 5.4- to 8.6-fold difference in inactivation rate was found between individual strains within each species, while the strain variability of the three fungal species was not statistically different. We evaluated whether the degree of intraspecies variability is uniform, not only within the fungal kingdom, but also amongst different bacterial species. Comparison with three spore-forming bacteria and two non-spore-forming bacteria revealed that the variability of the different species was indeed in the same order of magnitude, which hints to a microbial signature of variation that exceeds kingdom boundaries.In this work, a multireactor system to study digestion (MuReDi) kinetics is introduced. For this, a custom-made automated system with four independent syringe pumps (BioXplorer 100, H.E.L Group) was acquired. This system consists of multiple, small-scale reactors allowing to study digestion as a function of time and thus to determine digestion kinetics. The different digestion conditions used in the oral, gastric, and small intestinal phase were based on the digestion protocols published by the INFOGEST consortium. We showed that the minimum working volume of a reactor is 30 mL. Besides, repeatability of the digestion kinetics was shown for two food systems a liquid Ensure® Plus Vanilla drink, and a solid, cooked lentil sample. When comparing static digestion kinetics with semi-dynamic ones, a significantly different digestion pattern was observed. In the static case, a relatively fast hydrolysis rate was observed until a clear plateau was reached. Oppositely, for the semi-dynamic case, a delayed start of the hydrolysis process was noticed. In the gastric phase, this was explained by the decreasing pH and the large pH dependency of pepsin activity. In the small intestine, the lag phase was relatively shorter, yet clearly present. Here we related it to the gradual enzyme (and bile salt) secretion that had to diffuse towards the substrate before hydrolysis could start. Generally, this work showed that the MuReDi system could be used to perform a semi-dynamic digestion approach which largely impacted the overall digestion kinetics. This is important to consider in future in vitro food digestion simulation work to come closer to physiologically relevant digestion kinetics.Cellulose has attracted high attention due to its advantages of abundant resources, renewable and biodegradable. Modification of natural plant cellulose has become a hot topic worldwide. Conventional chemical modification methods commonly cause great damage to the environment. The current review presents the effects of innovative, eco-friendly and sustainable nonthermal processing technologies on cellulose structure and properties. Typical techniques include high pressure processing, cold plasma, ultrasonic and irradiation treatment. Their superiorities in the modification of cellulose are highlighted, and the advantages and limitations of nonthermal processing technologies for plant cellulose modification are also discussed. Nonthermal processing technologies can improve cellulose functional properties by playing an important role in the chemical bonds of the molecular chains, crystalline regions or amorphous parts through energy or active particles generated in the process, or promoting the crosslinking and graft copolymerization of cellulose molecules.