Ennisfoster5725
The thalidomide analogue lenalidomide (Len) is a clinical therapeutic that alters the substrate engagement of cereblon (CRBN), a substrate receptor for the CRL4 E3 ubiquitin ligase. Here, we report the development of photolenalidomide (pLen), a Len probe with a photoaffinity label and enrichment handle, designed for target identification by chemical proteomics. pLen preserves the substrate degradation profile, phenotypic antiproliferative and immunomodulatory properties of Len, and enhances interactions with the thalidomide-binding domain of CRBN, as revealed by binding site mapping and molecular modeling. Using pLen, we captured the known targets IKZF1 and CRBN from multiple myeloma MM.1S cells and further identified a new target, eukaryotic translation initiation factor 3 subunit i (eIF3i), from HEK293T cells. eIF3i is directly labeled by pLen and forms a ternary complex with CRBN in the presence of Len across several epithelial cell lines but is itself not ubiquitylated or degraded. These data point to the existence of a broader array of targets induced by ligands to CRBN that may or may not be degraded, which can be identified by the highly translatable application of pLen to additional biological systems.Development of biosensing systems resembling optical 96-well plates using portable single-channel electrochemical analyzers is usually a great challenge. Herein, a light-addressable paper-based photoelectrochemical (PEC) analytical device suitable for on-site high-throughput biosensing is reported. This device consists of a solar cell-type single-channel PEC system with plenty of separated detection zones. Each zone contains a silver nanowires/fullerene-Congo red (AgNWs/C60-CR) disc working electrode and a AgNWs ring reference/counter electrode, which can be massively produced by a simple filtration and laser cutting method. Taking advantage of the sensitive photocurrent response of thiocholine (TCl) on AgNWs/C60-CR, an acetylcholinesterase (AChE)-based PEC biosensing system with tunable detection throughput for the on-site screening of ultratrace organophosphorus pesticides (OPs) was established.Data-dependent acquisition (DDA) methods are the current standard for quantitative proteomics in many biological systems. However, DDA preferentially measures highly abundant proteins and generates data that is plagued with missing values, requiring extensive imputation. Here, we demonstrate that library-free BoxCarDIA acquisition, combining MS1-level BoxCar acquisition with MS2-level data-independent acquisition (DIA) analysis, outperforms conventional DDA and other library-free DIA (directDIA) approaches. Using a combination of low- (HeLa cells) and high- (Arabidopsis thaliana cell culture) dynamic range sample types, we demonstrate that BoxCarDIA can achieve a 40% increase in protein quantification over DDA without offline fractionation or an increase in mass-spectrometer acquisition time. Further, we provide empirical evidence for substantial gains in dynamic range sampling that translates to deeper quantification of low-abundance protein classes under-represented in DDA and directDIA data. Unlike both DDA and directDIA, our new BoxCarDIA method does not require full MS1 scans while offering reproducible protein quantification between replicate injections and providing more robust biological inferences. Overall, our results advance the BoxCarDIA technique and establish it as the new method of choice for label-free quantitative proteomics across diverse sample types.Electron transfer mediated by iron minerals is considered as a critical redox step for the dynamics of pollutants in soil. Herein, we explored the reduction process of Cr(VI) with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon (biochar). Both low- and high-crystallinity ferric oxyhydroxides induced Cr(VI) immobilization mainly via the sorption process, with a limited reduction process. However, the Cr(VI) reduction immobilization was inspired by the copresence of biochar. Low-crystallinity ferric oxyhydroxide had an intense chemical combination with biochar and strong sorption for Cr(VI) via inner-sphere complexation, leading to the indirect electron transfer route for Cr(VI) reduction, that is, the electron first transferred from biochar to iron mineral through C-O-Fe binding and then to Cr(VI) with Fe(III)/Fe(II) transformation on ferric oxyhydroxides. With increasing crystallinity of ferric oxyhydroxides, the direct electron transfer between biochar and Cr(VI) became the main electron transfer avenue for Cr(VI) reduction. The indirect electron transfer was suppressed in the high-crystallinity ferric oxyhydroxides due to less sorption of Cr(VI), limited combination with biochar, and higher iron stability. WZ4003 concentration This study demonstrates that electron transfer mechanisms involving iron minerals change with the mineral crystallization process, which would affect the geochemical process of contaminants with pyrogenic carbon.Treatment with the superacid bis(trifluoromethanesulfonyl)amide (sometimes known as TFSA, TFSI, or HNTf2) enhances the properties of a wide range of optoelectronic materials, resulting in longer effective carrier lifetimes and higher photoluminescence quantum yields. We have conducted a multimaterial study treating both crystalline silicon and transition metal dichalcogenide (TMDC) monolayers and few-layer flakes with solutions formed from TFSA and a range of compounds with related chemical structures with different Lewis acidities, in order to elucidate the factors underpinning the TFSA-related class of enhancement treatments. We adopt dichloromethane (DCM) as a common solvent as it provides good results at room temperature and is potentially less hazardous than TFSA-dichloroethane (DCE) heated to ∼100 °C, which has been used previously. Kelvin probe experiments on silicon demonstrate that structurally similar chemicals give passivating films with substantially different charge levels, with the higher levels of charge associated with the presence of CF3SO2 groups resulting in longer effective lifetimes due to an enhancement in field-effect passivation. Treatment with all analogue solutions used results in enhanced photoluminescence in MoS2 and WS2 compared to untreated controls. Importantly we find that MoS2 and WS2 can be enhanced by analogues to TFSA that lack sulfonyl groups, meaning an alternative mechanism to that proposed in computational reports for TFSA enhancement must apply.To improve the crystallization and meanwhile adjust the band levels of perovskites, we design and synthesize a novel organic molecule, 4,4'-(spiro[cyclopenta[1,2-b5,4-b']dithiophene-4,2'-[1,3]dioxolane]-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (TM1), to dissolve in an antisolvent for the antisolvent engineering of perovskite solar cells (PSCs). The coordination interactions between TM1 and Pb2+ ions in perovskites and the hydrogen bonds between the O atoms in the methoxy of TM1 and the MA+ in perovskites are characterized with X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Owing to these interactions, TM1 can improve the perovskite crystallization, which reduces the trap density, enhances the interfacial hole extraction, and retards charge recombination as well, boosting short-circuit photocurrent notably. TM1 also shifts the valence band of perovskites upward by 0.17 eV, which aligns better with the highest occupied molecular orbital of hole transport materials and thus increases the open-circuit photovoltage significantly. As a result, the power conversion efficiency is enhanced from 17.22 to 20.21% by TM1. Moreover, TM1 can also improve device stability significantly. These findings demonstrate that TM1 is a kind of functional material as an additive in an antisolvent for both crystallization improvement and energy level adjustment of perovskites toward highly efficient and stable PSCs.Ultraviolet (UV)-based advanced oxidation processes (AOPs) are increasingly used for the degradation of micropollutants in water and wastewater. This study reports a novel UVA/chlorine dioxide (ClO2) AOP based on the photolysis of ClO2 using energy-efficient UV radiation sources in the UVA range (e.g., UVA-LEDs). At a ClO2 dosage of 74 μM (5.0 mg L-1 as ClO2) and a UV fluence at 47.5 mJ cm-2, the UVA365/ClO2 AOP generated a spectrum of reactive species, including chlorine oxide radicals (ClO•), chlorine atoms (Cl•), hydroxyl radicals (HO•), and ozone at a concentration of ∼10-13, ∼10-15, ∼10-14, and ∼10-7 M, respectively. A kinetic model to simulate the reactive species generation in the UVA365/ClO2 AOP was established, validated against the experimental results, and used to predict the pseudo-first-order rate constants and relative contributions of different reactive species to the degradation of 19 micropollutants in the UVA365/ClO2 AOP. Compared to the well-documented UVC254/chlorine AOP, the UVA365/ClO2 AOP produced similar levels of reactive species at similar oxidant dosages but was much less pH-dependent and required much lower energy input, with much lower formation of chloro-organic byproducts and marginal formation of chlorite and chlorate.In direct energy Kohn-Sham (DEKS) theory, the density functional theory electronic energy equals the sum of occupied orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree exchange-correlation potential, which must be approximated. In the present study, the Fermi-Amaldi term is incorporated into approximate DEKS calculations, introducing the required -1/r contribution to the exchange-correlation component of the shifted potential in asymptotic regions. It also provides a mechanism for eliminating one-electron self-interaction error, and it introduces a nonzero exchange-correlation component of the shift in the potential that is of appropriate magnitude. The resulting electronic energies are very sensitive to the methodologies considered, whereas the highest occupied molecular orbital energies and exchange-correlation potentials are much less sensitive and are similar to those obtained from DEKS calculations using a conventional exchange-correlation functional.Remote epitaxy is a very promising technique for the preparation of single-crystal thin films of flexibly transferred III-V group semiconductors. However, the epilayer nucleation mechanism of remote epitaxy and the epilayer-substrate interface interactions on both sides of graphene are not well-understood. In this study, remote homo- and heteroepitaxy of GaN nucleation layers (NLs) were performed by metal organic chemical vapor deposition on GaN, sapphire (Al2O3), and AlN substrates with transferred single-layer graphene, respectively. The results show that the interface damage of SLG/GaN at high temperature is difficult for us to achieve the remote homoepitaxy of GaN. Therefore, we explored the nucleation mechanism of remote heteroepitaxy of GaN on SLG/Al2O3 and SLG/AlN substrates. Nucleation density, surface coverage, diffusion coefficient, and scaled nucleation density were used to quantify the differences in nucleation information of GaN grown on different polar substrates. Using high-resolution X-ray diffraction and high-resolution transmission electron microscopy analysis, we revealed the interfacial orientation relationship and atomic arrangement distribution between the GaN NLs and substrates on both sides of the SLG.