Goldmanmcginnis1684
In exploratory subgroup analyses, this association remained in White women (adj. R
=0.07; β=-0.23; p=0.005), and was more robust with younger age and lower blood pressure and in non-smokers, but also with greater central adiposity, higher low-density lipoprotein cholesterol and inflammation (all p<0.05).
Our data suggest that in young individuals, PAI-1 may already be associated with subclinical microvascular dysfunction.
Our data suggest that in young individuals, PAI-1 may already be associated with subclinical microvascular dysfunction.
The aim of this systematic review is to investigate different diagnostic methods and the available treatment options for subcutaneous panniculitis-like T-cell lymphoma (SPTCL).
We searched PubMed, Web of Science, SCOPUS, EBSCO, and CINAHL Plus for published case reports of SPTCL. From each record, we extracted data of the diagnostic methods, immunohistochemical profile, clinical characteristics, and the treatment approaches provided. Data were summarized and narratively synthesized to highlight the various diagnostic methods and treatment options of SPTCL.
Our literature search yielded 1293 unique citations. Following screening, nine articles reporting a total of 15 cases were included in this systematic review. All patients presented with subcutaneous nodules. Three of the 15 cases were initially misdiagnosed. The atypical lymphoid cells were positive for CD2, CD3, granzyme B, and TIA-1 and negative for CD1a, EBER, and CD20 in all the reported cases. The atypical lymphoid cells were positive for CD45RO in four out of seven cases, positive for CD56 in three out of 12 cases tested, while positive for CD5 and CD8 in the majority of cases. Therapy ranged from topical agents to immunosuppressive agents all the way to multiagent chemotherapy.
SPTCL is a rare lymphoma. Diagnosis is highly dependent on the immunohistochemical stains added to histopathologic and radiologic findings. Therapy is dependent on the pace of the disease, with encouraging results obtained with single-agent cyclosporine.
SPTCL is a rare lymphoma. Diagnosis is highly dependent on the immunohistochemical stains added to histopathologic and radiologic findings. Therapy is dependent on the pace of the disease, with encouraging results obtained with single-agent cyclosporine.Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.The human genetic dissection of clinical phenotypes is complicated by genetic heterogeneity. Gene burden approaches that detect genetic signals in case-control studies are underpowered in genetically heterogeneous cohorts. We therefore developed a genome-wide computational method, network-based heterogeneity clustering (NHC), to detect physiological homogeneity in the midst of genetic heterogeneity. Simulation studies showed our method to be capable of systematically converging genes in biological proximity on the background biological interaction network, and capturing gene clusters harboring presumably deleterious variants, in an efficient and unbiased manner. We applied NHC to whole-exome sequencing data from a cohort of 122 individuals with herpes simplex encephalitis (HSE), including 13 individuals with previously published monogenic inborn errors of TLR3-dependent IFN-α/β immunity. The top gene cluster identified by our approach successfully detected and prioritized all causal variants of five TLR3 pathway genes in the 13 previously reported individuals. This approach also suggested candidate variants of three reported genes and four candidate genes from the same pathway in another ten previously unstudied individuals. TLR3 responsiveness was impaired in dermal fibroblasts from four of the five individuals tested, suggesting that the variants detected were causal for HSE. NHC is, therefore, an effective and unbiased approach for unraveling genetic heterogeneity by detecting physiological homogeneity.How amphipathic phospholipids are shuttled between the membrane bilayer remains an essential but elusive process, particularly at the endoplasmic reticulum (ER). One prominent phospholipid shuttling process concerns the biogenesis of APOB-containing lipoproteins within the ER lumen, which may require bulk trans-bilayer movement of phospholipids from the cytoplasmic leaflet of the ER bilayer. Here, we show that TMEM41B, present in the lipoprotein export machinery, encodes a previously conceptualized ER lipid scramblase mediating trans-bilayer shuttling of bulk phospholipids. Loss of hepatic TMEM41B eliminates plasma lipids, due to complete absence of mature lipoproteins within the ER, but paradoxically also activates lipid production. Mechanistically, scramblase deficiency triggers unique ER morphological changes and unsuppressed activation of SREBPs, which potently promotes lipid synthesis despite stalled secretion. Together, this response induces full-blown nonalcoholic hepatosteatosis in the TMEM41B-deficient mice within weeks. Collectively, our data uncovered a fundamental mechanism safe-guarding ER function and integrity, dysfunction of which disrupts lipid homeostasis.Neuronal function relies on tightly controlled cytoskeleton transport with adaptive cargo trafficking as prerequisite for synaptic transmission. During inflammation in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), axonal transport efficiency declines, followed by neurodegeneration. Furthermore, neuroinflammation causes an imbalance between excitatory and inhibitory transmission, triggering synaptic dysfunction and loss. Recent data suggest that neuronal transport and synaptic deficits during neuroinflammation are functionally interconnected. To view this SnapShot, open or download the PDF.In an interview with Neuron, Mark Mattson discusses his scientific and personal journey, from racing horses to heading a laboratory at NIH. Mattson reflects on a wide-ranging career that has included fundamental findings in developmental neuroscience and bringing intermittent fasting to the forefront of neurodegeneration research.The mechanism by which antidepressants elicit clinical improvements has proven elusive. In a recent publication in Cell, Casarotto et al. (2021) reveal a surprising direct interaction between antidepressants and TrkB. This link provides an important mechanistic insight into synaptic remodeling that may assist in the design of improved antidepressant therapeutics.In this issue of Neuron, Gurnani and Silver (2021) report that activity across Golgi cells, a major type of inhibitory interneuron in the cerebellar cortex, is multidimensional and modulated by behavior. These results suggest multiple functions for inhibition in cerebellar computations.In this issue of Neuron, McElvain et al. (2021) show that the major output of the basal ganglia, the substantia nigra pars reticulata, targets no fewer than 42 midbrain and brainstem structures and conveys an efference copy of the downstream commands back via thalamus to the cortex and striatum.Protein aggregates can sequester RNA in neurodegenerative disease, but the exact RNAs sequestered by tau inclusions have remained uncharacterized. In this issue of Neuron, Lester et al. (2021) begin to identify these RNAs and reveal related perturbations in nuclear speckles.Wang et al. (2021) characterize the molecular, cellular, and circuit-level role of Oligophrenin-1 in prefrontal parvalbumin interneurons, demonstrating that loss of Ophn1 function in these neurons is a mechanism for increased susceptibility to stress in intellectual disability caused by OPHN1 mutations.Mitochondria in plant cells exist largely as individual organelles which move, colocalize, and interact, but the cellular priorities addressed by these dynamics remain incompletely understood. Here, we elucidate these principles by studying the dynamic "social networks" of mitochondria in Arabidopsis thaliana wildtype and mutants, describing the colocalization of individuals over time. CORT125134 We combine single-cell live imaging of hypocotyl mitochondrial dynamics with individual-based modeling and network analysis. We identify an inevitable tradeoff between mitochondrial physical priorities (an even cellular distribution of mitochondria) and "social" priorities (individuals interacting, to facilitate the exchange of chemicals and information). This tradeoff results in a tension between maintaining mitochondrial spacing and facilitating colocalization. We find that plant cells resolve this tension to favor efficient networks with high potential for exchanging contents. We suggest that this combination of physical modeling coupled to experimental data through network analysis can shed light on the fundamental principles underlying these complex organelle dynamics. A record of this paper's transparent peer review process is included in the supplemental information.Biological organization crosses multiple spatial scales from molecular, cellular, to tissues and organs. The proliferation of molecular profiling technologies enables increasingly detailed cataloging of the components at each scale. However, the scarcity of spatial profiling has made it challenging to bridge across these scales. Emerging technologies based on highly multiplexed in situ profiling are paving the way to study the spatial organization of cells and tissues in greater detail. These new technologies provide the data needed to cross the scale from cell biology to physiology and identify the fundamental principles that govern tissue organization. Here, we provide an overview of these key technologies and discuss the current and future insights these powerful techniques enable.Complexome profiling is a rapidly spreading, powerful technique to gain insight into the nature of protein complexes. It identifies and quantifies protein complexes separated into multiple fractions of increasing molecular mass using mass spectrometry-based, label-free bottom-up proteomics. Complexome profiling enables a sophisticated and thorough characterization of the composition, molecular mass, assembly, and interactions of protein complexes. However, in practice, its application is limited by the large number of samples it generates and the related time of mass spectrometry analyses. Here, we report an improved process workflow that implements tandem mass tags for multiplexing complexome profiling. This workflow substantially reduces the number of samples and measuring time without compromising protein identification or quantification reliability. In profiles from mitochondrial fractions of cells recovering from chloramphenicol treatment, tandem mass tags-multiplexed complexome profiling exhibited migration patterns of mature ATP synthase (complex V) and assembly intermediates that were consistent in composition and abundance with profiles obtained by the label-free approach.