Hammondmelchiorsen3886
With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inherent challenge to deal with the sheets containing other non-plant objects such as color charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping, damaged, and intact individual leaves exist together with other plant organs such as stems and fruits, which increases the complexity of leaf trait extraction and analysis. Focusing on segmentation and trait extraction on individual intact herbarium leaves, this study proposes a pipeline consisting of deep learning semantic segmentation model (DeepLabv3+), connected component analysis, and a single-leaf classifier trained on binary images to automate the extraction of an intact individual leaf with phenotypic traits. The proposed method achieved a higher F1-score for both the in-house dataset (96%) and on a publicly available herbarium dataset (93%) compared to object detection-based approaches including Faster R-CNN and YOLOv5. Furthermore, using the proposed approach, the phenotypic measurements extracted from the segmented individual leaves were closer to the ground truth measurements, which suggests the importance of the segmentation process in handling background noise. Compared to the object detection-based approaches, the proposed method showed a promising direction toward an autonomous tool for the extraction of individual leaves together with their trait data directly from herbarium specimen images.This review paper presents an assortment of research on a family of photodetectors which use the same base mechanism, current assistance, for the operation. Current assistance is used to create a drift field in the semiconductor, more specifically silicon, in order to improve the bandwidth and the quantum efficiency. Based on the detector and application, the drift field can be static or modulated. Applications include 3D imaging (both direct and indirect time-of-flight), optical receivers and fluorescence lifetime imaging. This work discusses the current-assistance principle, the various photodetectors using this principle and a comparison is made with other state-of-the-art photodetectors used for the same application.Emerging and recurrent outbreaks caused by zoonotic agents pose a public health risk. They result in morbidity and mortality in humans and significant losses in the livestock and food industries. This highlights the need for rapid surveillance methods. selleck kinase inhibitor Despite the high reliability of conventional pathogen detection methods, they have high detection limits and are time-consuming and not suitable for on-site analysis. Furthermore, the unpredictable spread of zoonotic infections due to a complex combination of risk factors urges the development of innovative technologies to overcome current limitations in early warning and detection. Biosensing, in particular, is highlighted here, as it offers rapid and cost-effective devices for use at the site of infection while increasing the sensitivity of detection. Portuguese research in biosensors for zoonotic pathogens is the focus of this review. This branch of research produces exciting and innovative devices for the study of the most widespread pathogenic bacteria. The studies presented here relate to the different classes of pathogens whose characteristics and routes of infection are also described. Many advances have been made in recent years, and Portuguese research teams have increased publications in this field. However, biosensing still needs to be extended to other pathogens, including potentially pandemic viruses. In addition, the use of biosensors as part of routine diagnostics in hospitals for humans, in animal infections for veterinary medicine, and food control has not yet been achieved. Therefore, a convergence of Portuguese efforts with global studies on biosensors to control emerging zoonotic diseases is foreseen for the future.The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75ve images.Geo-social community detection over location-based social networks combining both location and social factors to generate useful computational results has attracted increasing interest from both industrial and academic communities. In this paper, we formulate a novel community model, termed geo-social group (GSG), to enforce both spatial and social factors to generate significant computational patterns and to investigate the problem of community detection over location-based social networks. Specifically, GSG detection aims to extract all group-venue clusters, where users are similar to each other in the same group and they are located in a minimum covering circle (MCC) for which the radius is no greater than a distance threshold γ. Then, we present a GSGD algorithm following a three-step paradigm to enumerate all qualified GSGs in a large network. We propose effective optimization techniques to efficiently enumerate all communities in a network. Furthermore, we extend a significant GSG detection problem to top-k geo-social group (TkGSG) mining. Rather than extracting all qualified GSGs in a network, TkGSG aims to return k feasibility groups to guarantee the diversity. We prove the hardness of computing the TkGSGs. Nevertheless, we propose the effective greedy approach with a guaranteed approximation ratio of 1-1/e. Extensive empirical studies on real and synthetic networks show the superiority of our algorithm when compared with existing methods and demonstrate the effectiveness of our new community model and the efficiency of our optimization techniques.Ultrasound breast imaging is a promising alternative to conventional mammography because it does not expose women to harmful ionising radiation and it can successfully image dense breast tissue. However, conventional ultrasound imaging only provides morphological information with limited diagnostic value. Ultrasound computed tomography (USCT) uses energy in both transmission and reflection when imaging the breast to provide more diagnostically relevant quantitative tissue properties, but it is often based on time-of-flight tomography or similar ray approximations of the wave equation, resulting in reconstructed images with low resolution. Full-waveform inversion (FWI) is based on a more accurate approximation of wave-propagation phenomena and can consequently produce very high resolution images using frequencies below 1 megahertz. These low frequencies, however, are not available in most USCT acquisition systems, as they use transducers with central frequencies well above those required in FWI. To circumvent this problem, we designed, trained, and implemented a two-dimensional convolutional neural network to artificially generate missing low frequencies in USCT data. Our results show that FWI reconstructions using experiment data after the application of the proposed method successfully converged, showing good agreement with X-ray CT and reflection ultrasound-tomography images.Functional electrical stimulation (FES) is a technique used in rehabilitation, allowing the recreation or facilitation of a movement or function, by electrically inducing the activation of targeted muscles. FES during cycling often uses activation patterns which are based on the crank angle of the pedals. Dynamic changes in their underlying predefined geometrical models (e.g., change in seating position) can lead to desynchronised contractions. Adaptive algorithms with a real-time interpretation of anatomical segments can avoid this and open new possibilities for the automatic design of stimulation patterns. However, their ability to accurately and precisely detect stimulation triggering events has to be evaluated in order to ensure their adaptability to real-case applications in various conditions. In this study, three algorithms (Hilbert, BSgonio, and Gait Cycle Index (GCI) Observer) were evaluated on passive cycling inertial data of six participants with spinal cord injury (SCI). For standardised comparisobetween new control methods and an existing reference.The rapid development of ubiquitous mobile computing has enabled the collection of new types of massive traffic data to understand collective movement patterns in social spaces. Contributing to the understanding of crowd formation and dispersal in populated areas, we developed a model of visitors' dynamic agglomeration patterns at a particular event using dynamic population data. This information, a type of big data, comprised aggregate Global Positioning System (GPS) location data automatically collected from mobile phones without users' intervention over a grid with a spatial resolution of 250 m. Herein, spatial autoregressive models with two-step adjacency matrices are proposed to represent visitors' movement between grids around the event site. We confirmed that the proposed models had a higher goodness-of-fit than those without spatial or temporal autocorrelations. The results also show a significant reduction in accuracy when applied to prediction with estimated values of the endogenous variables of prior time periods.In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of computing resources, an efficient DQN was used for the experiments using transfer learning data. Additionally, we conducted scheduling studies in the edge computing ecosystem of our manufacturing processes without the help of cloud centers. Cloud computing, an environment in which scheduling processing is performed, has issues sensitive to the manufacturing process in general, such as security issues and communication delay time, and research is being conducted in various fields, such as the introduction of an edge computing system that can replace them. We proposed a method of independently performing scheduling at the edge of the network through cooperative scheduling between edge devices within a multi-access edge computing structure.