Lynnwhitley8542

Z Iurium Wiki

Verze z 29. 9. 2024, 17:33, kterou vytvořil Lynnwhitley8542 (diskuse | příspěvky) (Založena nová stránka s textem „The fused protein can also hydrolyze completely the sucrose in sugarcane molasses. Our results suggest that GspInv is an unusual invertase and a promising…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The fused protein can also hydrolyze completely the sucrose in sugarcane molasses. Our results suggest that GspInv is an unusual invertase and a promising candidate for high fructose syrup preparation. Copyright © 2020 Zhou, Peng, Liu, Chang, Xiao, Liu and Fang.Almost all bacteria secrete spherical membranous nanoparticles, also referred to as membrane vesicles (MVs). A variety of MV types exist, ranging from 20 to 400 nm in diameter, each with their own formation routes. The most well-known vesicles are the outer membrane vesicles (OMVs) which are formed by budding from the outer membrane in Gram-negative bacteria. Recently, other types of MVs have been discovered and described, including outer-inner membrane vesicles (OIMVs) and cytoplasmic membrane vesicles (CMVs). The former are mainly formed by a process termed endolysin-triggered cell lysis in Gram-negative bacteria, the latter are formed by Gram-positive bacteria. MVs carry a wide range of cargo, such as nucleic acids, virulence factors and antibiotic resistance components. Moreover, they are involved in a multitude of biological processes that increase bacterial pathogenicity. In this review, we discuss the functional aspects of MVs secreted by bacteria associated with cystic fibrosis and nosocomial pneumonia. We mainly focus on how MVs are involved in virulence, antibiotic resistance, biofilm development and inflammation that consequently aid these bacterial infections. Copyright © 2020 Vitse and Devreese.Honeybee colony deaths are often attributed to the ectoparasitic mite Varroa destructor and deformed wing virus (DWV), vectored by the mite. In the presence of V. destructor both main genotypes (DWV-A and DWV-B) have been correlated with colony loss. Studies show that DWV-B is the most prevalent genotype in the United Kingdom and Europe. More recently DWV-B has increased in prevalence in the United States. selleck chemicals llc The increasing prevalence of DWV-B at the expense of DWV-A suggests that competition exists between the genotypes. Competition may be due to disparities in virulence between genotypes, differences in fitness, such as rate of replication, or a combination of factors. In this study we investigated if DWV genotypes differ in their rate of accumulation in Australian honeybees naïve to both V. destructor and DWV, and if viral load was associated with mortality in honeybee pupae. We singly and co-infected pupae with DWV-A, DWV-B, and a recombinant strain isolated from a V. destructor tolerant bee population. We mto the increasing prevalence of DWV-B globally. Copyright © 2020 Norton, Remnant, Buchmann and Beekman.Low moisture content ready-to-eat foods vended in Nigerian markets could be pre-packaged or packaged at point of sale. These foods are widely and frequently consumed across Nigeria as quick foods. Despite their importance in the daily diets of Nigerians, a comprehensive study on the diversity of fungi, fungal metabolite production potential, and mycotoxin contamination in the foods has not yet been reported. Therefore, this study assessed the diversity of fungi in 70 samples of low moisture content ready-to-eat foods [cheese balls, garri (cassava-based), granola (a mix of cereals and nuts) and popcorn] in Nigeria by applying a polyphasic approach including morphological examination, genera/species-specific gene marker sequencing and secondary metabolite profiling of fungal cultures. Additionally, mycotoxin levels in the foods were determined by LC-MS/MS. Fungal strains (n = 148) were recovered only from garri. Molecular analysis of 107 representative isolates revealed 27 species belonging to 12 genera Acremon the foods. In garri, cheeseballs, popcorn and granola were 1, 6, 12, and 23 mycotoxins detected, respectively. Deoxynivalenol, fumonisins, moniliformin, aflatoxins and citrinin contaminated 37, 31, 31, 20, and 14% of all food samples, respectively. Overall, citrinin had the highest mean concentration of 1481 μg/kg in the foods, suggesting high citrinin exposures in the Nigerian populace. Fungal and mycotoxin contamination of the foods depend on pre-food and post-food processing practices. Copyright © 2020 Ezekiel, Oyedele, Kraak, Ayeni, Sulyok, Houbraken and Krska.Salmonella enterica serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of S. Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin. It was previously reported that the absence of the SehB antitoxin affects the growth of S. Typhimurium. In addition, the SehB antitoxin can interact directly with the SehA toxin neutralizing its toxic effect as well as repressing its own expression. We identified conserved residues on SehB homologous proteins. Point mutations were introduced at both N- and C-terminal of SehB antitoxin to analyze the effect of these changes on its transcription repressor function, on its ability to form homodimers and on the virulence of S. Typhimurium. All changes in amino acid residues at both the N- and C-terminal affected the repressor function of SehB antitoxin and they were required for DNA-binding activity. Mutations in the amino acid residues at the N-terminal showed a lower capacity for homodimer formation of the SehB protein. However, none of the SehB point mutants were affected in the interaction with the SehA toxin. In terms of virulence, the eight single-amino acid mutations were attenuated for virulence in the mouse model. In agreement with our results, the eight amino acid residues of SehB antitoxin were required for its repressor activity, affecting both homodimerization and DNA-binding activity, supporting the notion that both activities of SehB antitoxin are required to confer virulence to Salmonella enterica. Copyright © 2020 Chimal-Cázares, Hernández-Martínez, Pacheco, Ares, Soria-Bustos, Sánchez-Gutiérrez, Izquierdo-Vega, Ibarra, González-y-Merchand, Gorvel, Méresse and De la Cruz.Penicillium expansum is one of the most harmful post-harvest pathogens of pomaceous fruits and the causal agent of blue rot disease. During infection, P. expansum produces the toxic secondary metabolites patulin and citrinin that can impact virulence and, further, render the fruit inedible. Several studies have shown that epigenetic machinery controls synthesis of secondary metabolites in fungi. In this regard, the epigenetic reader, SntB, has been reported to govern the production of multiple toxins in Aspergillus species, and impact virulence of plant pathogenic fungi. Here we show that deletion of sntB in P. expansum results in several phenotypic changes in the fungus including stunted vegetative growth, reduced conidiation, but enhanced germination rates as well as decreased virulence on Golden Delicious apples. In addition, a decrease in both patulin and citrinin biosynthesis in vitro and patulin in apples, was observed. SntB positively regulates expression of three global regulators of virulence and secondary metabolism (LaeA, CreA, and PacC) which may explain in part some of the phenotypic and virulence defects of the PeΔsntB strain. link2 Lastly, results from this study revealed that the controlled environmental factors (low temperatures and high CO2 levels) to which P. expansum is commonly exposed during fruit storage, resulted in a significant reduction of sntB expression and consequent patulin and citrinin reduction. These data identify the epigenetic reader SntB as critical factor regulated in post-harvest pathogens under storage conditions and a potential target to control fungal colonization and decaying of stored fruit. Copyright © 2020 Tannous, Barda, Luciano-Rosario, Prusky, Sionov and Keller.Japan has been running a nationwide antenatal human T-cell leukemia virus type-1 (HTLV-1) antibody screening program since 2010 for the prevention of HTLV-1 mother-to-child transmission. As part of the program, pregnant women are invited to take an HTLV-1 antibody screening test, usually within the first 30 weeks of gestation, during regular pregnancy checkups. Pregnant women tested positive on the antibody screening test undergo a confirmatory test, either western blotting or line immunoassay. In indeterminate case, polymerase chain reaction (PCR) is used as a final test to diagnose infection. Pregnant women tested positive on a confirmatory or PCR test are identified as HTLV-1 carriers. As breastfeeding is a predominant route of postnatal HTLV-1 mother-to-child transmission, exclusive formula feeding is widely used as a postnatal preventive measure. link3 Although there is insufficient evidence that short-term breastfeeding during ≤3 months does not increase the risk of mother-to-child transmission compared to exfy how these children should be followed medically. Copyright © 2020 Itabashi, Miyazawa, Sekizawa, Tokita, Saito, Moriuchi, Nerome, Uchimaru and Watanabe.Campylobacter jejuni, a foodborne pathogen, is one of the most common bacterial causes of gastroenteritis in the world. Undercooked poultry, raw (unpasteurized) dairy products, untreated water, and contaminated produce are the most common sources associated with infection. C. jejuni establishes a niche in the gut by adhering to and invading epithelial cells, which results in diarrhea with blood and mucus in the stool. The process of colonization is mediated, in part, by surface-exposed molecules (adhesins) that bind directly to host cell ligands or the extracellular matrix (ECM) surrounding cells. In this review, we introduce the known and putative adhesins of the foodborne pathogen C. jejuni. We then focus our discussion on two C. jejuni Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs), termed CadF and FlpA, which have been demonstrated to contribute to C. jejuni colonization and pathogenesis. In vitro studies have determined that these two surface-exposed proteins bind to the ECM glycoprotein fibronectin (FN). In vivo studies have shown that cadF and flpA mutants exhibit impaired colonization of chickens compared to the wild-type strain. Additional studies have revealed that CadF and FlpA stimulate epithelial cell signaling pathways necessary for cell invasion. Interestingly, CadF and FlpA have distinct FN-binding domains, suggesting that the functions of these proteins are non-redundant. In summary, the binding of FN by C. jejuni CadF and FlpA adhesins has been demonstrated to contribute to adherence, invasion, and cell signaling. Copyright © 2020 Konkel, Talukdar, Negretti and Klappenbach.Antibiotic resistant strains of Acinetobacter baumannii are responsible for a large and increasing burden of nosocomial infections in Thailand and other countries of Southeast Asia. New approaches to their control and treatment are urgently needed and an attractive strategy is to remove the bacterial polysaccharide capsule, and thus the protection from the host's immune system. To examine phylogenetic relationships, distribution of capsule chemotypes, acquired antibiotic resistance determinants, susceptibility to complement and other traits associated with systemic infection, we sequenced 191 isolates from three tertiary referral hospitals in Thailand and used phenotypic assays to characterize key aspects of infectivity. Several distinct lineages were circulating in three hospitals and the majority belonged to global clonal group 2 (GC2). Very high levels of resistance to carbapenems and other front-line antibiotics were found, as were a number of widespread plasmid replicons. A high diversity of capsule genotypes was encountered, with only three of these (KL6, KL10, and KL47) showing more than 10% frequency.

Autoři článku: Lynnwhitley8542 (Pearson Roche)